Computing
Sclence

A Guide for Early Years and Primary Practitioners

Contents

03 Introduction

04 Curriculum Organisers for Computing Science

1 1 Computing Science Progression of Concepts

1 7 Computing Science Experiences and Outcomes and Benchmarks

2 1 Guide to Teaching the Experiences and Outcomes

33 Resources and Activities

Glossary
Authors:
Kate Farrell | Computing at School Scotland COMPUTING AT SCHOOL SCOTLAND
EDUCATE - ENGAGE - ENCOURAGE

Professor Judy Robertson | University of Edinburgh Partof BCS, The Chartered Insttute or I

Professor Quintin Cutts | University of Glasgow

Professor Richard Connor | University of Stirling

#)- THE UNIVERSITY
- of EDINBURGH

A Universit
45 of Glasgov}\;

[e viva

UNIVERSITY of

STIRLING &

INntroduction

The Scottish curriculum consists of individual learning
outcomes, called Experiences and Outcomes (Es and
Os), which are grouped into curricular areas. Curriculum
Organisers were introduced as overarching themes across
groups of Es and Os, and Benchmarks were added as
examples of typical activities.

This guide introduces and explains the Computing Science
(CS) Organisers and the updated experiences and
outcomes and Benchmarks. It provides an exemplification
guide and resources for use in Early and Primary years. It is
the result of four years of work drawing on:

* Research literature in CS education
* Arange of international curriculum efforts

* Experience of best-practice CS pedagogy in Scottish
primary and secondary contexts

* Teaching resources from across the world

The authors are all practising CS educators, bringing
experience of teacher education, CS education research,
resource creation, as well as deep knowledge of the
discipline of computing science. They are keenly aware of
the challenges involved in CS teaching.

An innovative contribution of the framework (compared

to curricular frameworks worldwide) is the organisation of
core computational thinking (CT) concepts according to
three Curriculum Organisers. The first Organiser introduces
learners to core concepts in CS. The second Organiser
introduces learners to how tools and languages use those
concepts. The third Organiser sees learners apply their
learning from the first two Organisers by creating solutions.

This structuring highlights key learning steps that are often
overlooked by teachers, but that are essential if all learners
are to succeed. We recognise that CS-specific knowledge
and skills are necessary before learners can successfully
solve problems.

In particular, the second Organiser concentrates on
understanding computer languages. Research and
experience is showing that this understanding is essential
before learners can successfully solve problems using
those languages.

Particular points for readers to note:

* While a complete BGE progression framework is
presented, only Early, First and Second levels are
covered in detail here. We have focussed on these
levels initially as there is no guidance currently available
for primary teachers, and hence it is crucial to fill this
gap. In due course, after further consultation with
secondary teachers, we will gradually expand the Third
and Fourth level to be suitable for learners who have
worked within this framework at primary school.

* Readers will come across a few items within this
computing progression framework that are common to
other curricular areas. This is intentional. The important
aspect here is to appreciate the whole developmental
sequence required to understand CS and develop CT
skills.

* We recognise that this is a work in progress. While we
have based this on the best thinking currently available,
we would expect this document to evolve and expand
over time as we observe and reflect on teaching in
action.

Based on our wide reading and experience, embodied in
the framework, we are confident that all pupils can learn

to think computationally. We think it is essential that this
learning is started as early as possible, boosting equality
of opportunity across both gender and background. We
look forward to hearing from practitioners working with this
framework, giving us advice on what works well and what is
less effective - and - we wish you the very best in bringing
this essential and exciting subject to your pupils.

e_
O
-

2
O

Curriculum Organisers for
Computing science

Curriculum Organisers are overarching themes across groups of individual learning outcomes, called Experiences and
Outcomes (Es and Os). There are three Curriculum Organisers for Computing Science in the Scottish curriculum. These

are as follows:

Organiser 1:
Understanding the world through computational thinking

This Organiser is about: Theory
Understanding the world through computational thinking and knowledge of core computing science
concepts is necessary in order to later apply that knowledge using languages and technology.

Organiser 2:
Understanding and analysing computing technology

This Organiser is about: Languages and Tools
Understanding of computing technology and the programming languages that control them is
essential before designing and building using these tools.

Organiser 3:
Designing, building and testing computing solutions

This Organiser is about: Creating
Use conceptual and technological knowledge to design, build and test.

The Organisers for CS are structured to assist teachers in
recognising key developmental stages in learning about
computing concepts. This enables teachers to identify and
correct learner misconceptions early on - something which
is notoriously difficult to do when CS education is centred
on creation.

The Organisers don't focus directly on bits of computing
kit or developing cool programs, unlike more traditional CS
approaches. Instead, they show how, before we can get

a computer to do anything useful for us (Organiser 3), we

need to understand precisely how computers are told to do

anything at all (Organiser 2) - and to understand that, we
need to know what kinds of tasks computers can carry out
(Organiser 1).

The Curriculum Organisers for Computing Science build
upon each other. The conceptual knowledge gained when
working towards the first Organiser, ‘'understanding the
world through computational thinking’, is required

to then understand computing languages and
technologies in the second Organiser, before we can then
‘design, build and test computing solutions’ in the final
Organiser using those technologies.

It is expected that learners will be able to understand more
complicated concepts in the first Organiser than they are
capable of reading or writing themselves in the second
and third Organisers. Similarly, their comprehension of
representations and code written by someone else will
likely outstrip their ability to write similarly complex code.

Most importantly, this does not mean that learners must
gain an understanding of all of the concepts (Organiser
1), languages and tools (Organiser 2) before going on to
develop and build computing solutions (Organiser 3). As
the Organisers complement each other, it is expected that
more than one Organiser could be covered in a single
lesson. It is a spiral curriculum, where the learners will
revisit concepts at increasing depth as they work through
the Levels.

The important thing is to ensure that learners are not
expected to write correct programs (Organiser 3) without
knowledge and understanding of the underlying concepts
(Organiser 1) or being able to accurately read and
understand programs in that language (Organiser 2).

Definitions of the Curriculum
Organisers in Computing Science

Understanding
the world
through
computational
thinking

Understanding
and analysing
computing
technology

The first Curriculum Organiser looks at the underlying theory in the academic discipline of
Computing Science. Theoretical concepts of Computing Science include the characteristics of
information processes, identifying information, classifying and seeing patterns.

This strand is about understanding the nature and characteristics of processes and information.
These can be taught through ‘unplugged’ activities (fun active learning tasks related to Computing
Science topics but carried out without a computer) and with structured discussions with learners.
There is a focus on recognising computational thinking when it is applied in the real world such as
in school rules, finding the shortest or fastest route between school and home, or the way objects
are stored in collections.

Learners will be able to identify steps and patterns in a process, for example seeing repeated
steps in a dance or lines of a song. In later stages, learners will begin to reason about properties
of processes, for example considering whether tasks could be carried out at the same time,
whether the output of a process is predictable, and how to compare the efficiency of two
processes.

Learners will identify information, classify it and see patterns. For example, learners might classify
and group objects where there is a clear distinction between types or where objects might belong
to more than one category.

This Curriculum Organiser aims to give learners insight into the hidden mechanisms of computers
and the programs that run on them. It explores the different kinds of language, graphical and
textual, used to represent processes and information. Some of these representations are used

by people and others by machines. For example, a set of instructions could be represented as a
verbal description, a sequence of blocks in a visual programming language such as Scratch, or
as a series of 1s and Os in binary.

In this Organiser learners will learn how to ‘read’ program code (before writing it in the next
Organiser) and describe its behaviour in terms of the processes they have learned about in the
first Organiser, processes that will be carried out by the underlying machinery when the program
runs. For example, learners could read a section of code and predict what will happen when it
runs or if lines of code change order. Learners will learn and explore different representations of
information and how these are stored and manipulated in the computing system under study.

A programming language defines a computing system. This Organiser also covers how other
computer systems work, including the components of an individual computer, configurations of
networked computers and software systems such as a search engine.

Designing,
building
and testing
computing
solutions

The third Organiser is about taking the concepts and understanding from the first two Organisers
and applying them. Learners will create solutions, perhaps by designing, building and testing
solutions on a computer or by writing a computational process down on paper. In doing so, they
will learn about modelling process and information from the real world in programs, and what
makes a good model to represent or solve a particular problem.

Learners will create representations of information. For example, learners could make lists,
tables, family trees, Venn diagrams and data models to capture key information from the
problems they are working on.

Learners will use their skills in language to create descriptions of processes that can be used by
other people. For example, a computer program is a great way to describe a process.

Learners will understand how to read, write and translate between different representations

such as between English statements, planning representations and actual computer code. For
example, developing skills in writing code could be scaffolded by studying worked examples or by
giving learners jumbled lines of code and asking them to put the lines into an order that will give
the correct outcome.

Although solutions can be created in a many different ways, it is expected that all learners will
experience creating a variety of solution on computers. This will show learners that the computer
will implement exactly what they have written and not what they intended, as well as giving them
practice in debugging.

Themes across the Curriculum
Organisers: Information and Process

Running through the three Organisers are the concepts

of processes and information. Computers are just A computing system does not spontaneously decide
machines that carry out well-defined processes that what process to carry out, or what information to
manipulate information. Imagine a child carrying out a manipulate. It is told precisely what to do via a set
long multiplication sum on paper (old-school!). She is of instructions held in a computer program. These
carrying out a process (writing down numbers and lines, instructions are written in a programming language.
repeated additions) that involves information (numbers, Such languages are not at all like the sort of language
their positioning on the paper, carry overs). Although we encounter every day - our spoken or signed natural
it may seem surprising, at the heart of all the amazing language. Appreciating the difference is very important.
digital technology around us - e.g. computer games, self- Also, it is crucial to take time to learn the language
driving cars, immersive 3D worlds, video-conferencing, thoroughly enough to be able to read and understand
on-line banking and shopping - are similar processes that exactly what programs written in the language mean.
manipulate information. So - to understand CS and to think Understanding the program enables us to be able to
computationally, we need to develop a steadily deepening say, ahead of time, what process the computer will
understanding about processes and information. carry out and what information it will manipulate as
Interestingly, we often don’t need computers for this! Thisis it follows the instructions in the program. To do this,
all explored in the first Organiser. we must understand how each instruction affects the
computer.

BasePlayer
Block G +

P2 e s e e s

.
.
.
.
.
.
(]
.
.
.
(]
.
.
.

This is harder than it may seem, because the internal
operation of the computer is largely hidden from us. We
can’t see what is going on so we must rely on complex
mental models to understand this. If these mental models
are incorrect or missing then we might think a computer
is magic (or out to get us!) rather than simply following

a process that is described by its instructions. The

good news is that despite the huge number of different
computing devices and programming languages, they
are remarkably similar, and hence learning a set of core
principles and skills will take us a long way. This mix of
understanding languages, representations and how they
influence the machines they run on is captured in the
second Organiser.

10

The third Organiser is typically the focus of computing
courses - taking a problem or task and writing a
program so that a computer can solve the problem or
carry out the task. It's often thought to be the exciting
bit (although we’'d argue the other Organisers can be
just as much fun!) Organiser 3 covers both the creation
of programs to solve problems, and also how to
determine whether they are correct and how to fix them
if they’re not.

It might seem unusual for a computing curriculum to
have programming included only in the third strand.
However, this is a strength of this framework. How

can we hope to instruct a computer to do what we
want if we don't understand the fundamental nature

of what its operation involves - processes and
information (Organiser 1)? And equally, we're unlikely
to be successful if we don'’t thoroughly understand

the means of communicating our instructions to the
computer - the programming language (Organiser 2). It
would be like trying to write a car repair manual without
understanding anything about cars and engineering,
nor about the English language and diagrams!

In all the above, we've written about computers and
programming languages. But the scope here is much
broader. The same set of core principles and skills
applies to databases, web systems, digital networks,
mobile systems and so on. They all use processes and
information of varying kinds. They all have languages
of instruction. And we take problems or tasks and write
solutions that will operate on these systems using
similar approaches and techniques.

Finally, it is clear that many of the concepts and skills
learned here are of value more broadly than computing
science and are translatable to other contexts.

Modern life is often complex and involves processes
and information even where computers are not

directly involved. Computational Thinking, which this
framework is designed to develop, can help in all kinds
of situations at home, in school and in the workplace.

Computing Science
Progression of Concepts

12

Core Computing Science Concepts
across the Organisers

As noted earlier, the Organisers help teachers to structure the learning of computing concepts. This table outlines
the range of individual computing concepts that have been incorporated into the progression framework. You will see
elements of each across the three Organisers.

Concepts

Early Level

First Level

Second Level

Structuring Processes

Sequence (of movements)

Simple sequences

Selection - sequences with
conditional statements

Single or parallel sequences

Variables

Patterns in Processes

Spotting patterns in
processes

Fixed repetition - |dentifying
patterns that repeat a
predetermined number of
times

Fixed or conditional
repetition - processes that
repeat a fixed number of
times or until a condition is
met

Structuring and
manipulating information

Basic sorting - classifying
of objects according to
characteristics

Grouping and ordering of
information collected from
objects

Using logic (AND, OR, NOT)
to sort objects depending
on different conditions

Following sorting algorithms

Structuring and
manipulating information,
such as family trees

Computing Systems

Computers follow
instructions

Computers take in inpults,
process them, store
information, and then output
the results

Computers can
communicate over networks

Progression of Information concepts in Organiser 1;
Understanding the world through computational thinking

Early level: oH o090

Learners can classify objects and group them into simple categories. For . A . A
example, they can group toys based on type, colour or size. They can spot
similarities and differences in objects and identify simple relationships
between them. Learners can also identify patterns in objects and information.

First level:

Learners can classify based on multiple categories. They can use a range of
ways to collect information and can group it in a logical, organised way using
their own and others’ criteria.

Learners can classify and make decisions based on logical thinking. Logical
decisions include AND (collecting objects that are red AND square), OR
(choose the Water OR Ice Pokemon creatures) and NOT (put away your jotters
but NOT your Maths jotter).

Second level:
Ada, age 9 Charlie, age 8
Learners will be aware that information can be sorted, and be able to perform

: _ ‘ _ Alan, age 12 Ada, age 9
a simple sorting algorithm on real world objects.

Charlie, age 8 Grace, age 11

They can structure related items of information, for example arranging family Grace, age 11 Alan, age 12
members into a family tree, or classifying animals according to species.

y4 100

13

14

Progression of Process concepts in Organiser 1
Understanding the world through computational thinking

Early level:

Learners are able to identify the beginning and end of a process and the steps in between. I ::>
This might be demonstrated by a learner programming a toy robot with a set of instructions]
or by giving someone directions to a familiar place.

kM

First level:

Learners will be able to demonstrate knowledge of processes by being able to follow
instructions in a recipe or understanding their role in tidying the classroom or in Scottish

country dancing. Learners can construct sequences of steps such as pirate treasure maps, * :

directions to secret locations, instructions on how to make a jam sandwich.

Learners should be able to describe the effect of each step in a sequence. They will be able -! ixB
to look at a set of steps and predict what the outcome will be, for example identifying where
they will end up in their school when they follow a set of directions.

Learners can identify similarities and differences in a set of steps in a process. They can ’

spot patterns that are identical, repeating or where steps are similar. Learners can describe F

how patterns are similar (such as ascending or descending numbers in songs or games). :
Learners understand how decisions (for example a test with a yes/no answer) can be used for Yes — \No
selection, to introduce choice in processes. Learners can make decisions based on logical

thinking (for example IF your painting is dry THEN put it in your tray ELSE put it on the table). ﬁ ﬁ

Second level:

Learners can identify when a process is a single sequence or consists of multiple parallel = ’

steps, such as team relay races and balloon passing party games. Later, in Organisers 2 and

3, learners will be able to identify parallel processes such as Scratch programs with multiple - <

‘sprites’ each following their own set of steps at the same time). ? =
I

L]

v They can predict the outcome of a process or identify when a process is non-predictable (e.g it has a random
? element such as board games with a spinners or dice). Learners can identify when a repeated set of steps is
= fixed (it loops a known number of times) or conditional (it loops until a condition is met).

Learners can see patterns in problem solving and identify a solution that has been used previously. For E
example, when creating a set of instructions on how to get to the head teacher, they can reuse instructions

on how to get to the school office, or instructions on how to cook pasta can be adapted for boiling rice. «
Later, if learners are creating games in Organiser 3, they can reuse sections of code for different purposes, X ?
such as setting up a lap timer or controlling the character using arrow keys. Learners will evaluate different E

solutions to a problem and evaluate them in terms of efficiency (smallest number of steps) and speed.

Progression of Languages in Organiser 2:
Understanding and Analysing Computing Technology

Early level:

When using floor turtles or simple robots, learners will start to understand
the relationship between the symbols used to create instructions, and the
behaviour of the device as it follows the instructions.

The important cognitive step is seeing the difference between pressing a
button to immediately move a robot, to understanding an arrow button as a
command which will cause a defined behaviour at some point in the future.

A learner should be able to understand a sequence of commands using
a simple symbolic language such as arrows drawn on paper. They should
be able to predict what the robot or person will do when it is presented
with a sequence of instructions (as well as learn to debug their thinking if
their prediction is proved false).

First level:

The benefit of using an icon-based block environment, like Scratchdr
or The Foos, is that learners without the literacy skills to read textual
instructions on blocks in Scratch can still explore the computing
concepts, just using pictorial icons instead of words (or colour-based
instructions, in the case of Ozobot).

Learners should become confident about understanding the precise
meaning of each individual block - that is, for example, the effect

that instruction has on a visual display when the program is run. This
understanding of meaning should also incorporate the concept of running
a whole program, with instructions being performed in order according

to the layout of the program’s blocks. This includes understanding how
each instruction block cumulatively affects the world it operates on, for
example, how the visual display is updated.

Second level:

Using a block-based development environment like Scratch, learners
will be able to explain the meaning of more complex programs that
include selection and repetition blocks. They understand that variables
can change as the program runs through each instruction block. They will
be able to predict what a complete program will do when it runs.

15

Progression of Languages in Organiser 3:
Designing, building and testing computing solutions

Early level:

Learners start to understand how to model behaviour in a robot or a
computer character using a simple sequence of commands. For example,
a floor robot can model the behaviour of moving towards a treasure box

with a series of instructions such as “turn left”, “go forwards” and so on.

More generally, a learner should be able to choose a destination for the
robot, design a sequence of instructions that will cause the robot to move
to that destination and, finally, enter that sequence of instructions and
test whether they achieve the desired effect. If this end state is not a state
that was planned, learners should identify and correct errors in their set of
instructions.

Of course, designing and building computing solutions cannot be
achieved without first understanding both the fundamental nature of step
by step processes (Organiser 1) and the effect on the robot caused by
running each instruction in the sequence (Organiser 2). While all three

of these aspects may be very obvious in simple examples, it is essential
from the beginning to unpick these before the learners progress onto
more complex contexts.

First level:

At this level, languages and systems such as Scratchdr are used to |

design programs which fulfil more sophisticated and more abstract tasks o j éj}:,r'“f{\l]fﬁﬁxb ji
y e M = A

than just movement commands. However, the essence is still using F o QJ : ‘\—J”J :I"'(J‘],- %

computing language skills (gained in Organiser 2) to achieve the design

of abstract processes (Organiser 1).

Second level:

At this level, learners should start to understand that there are many ways

of achieving the same outcomes, and that some of these are preferable to
others. They should have encountered this in previous Organisers through
exploring concepts of efficiency and speed.

Learners start to understand the relationship between the meaning of
programming constructs such as conditions and repetition, and the ways
in which these can be used to achieve desired behaviour in a running
program.

16

£IX81U09 SIy1 Ul 8|gen|en
aI0ouW 9oreds J0 paads sI ‘ejdwexs Jo)
1X81u00 Wejgold ay; uo Buipuadep suonn|os
Janeq, Buluiep o sAem jualayip aie
aJ1ay} 1ey} spuelsiepun pue wajgoid swes
8y} Joy swylobe aAleulsie saredwo)) e
JUBAS |00Y2S B / Jauulp Ajiwey aledaid 01
MOY ‘|00yas 01 8xel 01 81N0J yolym ‘yoid o}
ananb 1no-2ayo yoiym Buiprosp ‘ajdwexa
10} ‘ssao0id uolewloUl Ue se Bupew
UOISIOapP UewNY JO S8ouUeISUl $8q110sa(«
‘Klanijep pue Bupjoed] [eased ‘ul-o8yo
aullre ‘ejdwexs Joj ‘sjoejele [eaisAyd pue
sJaindwoo y1oqg BulAjoAul SLB]SAs xajdwiod
yBnoJyl uonewlojul Jo Jajsuel] 8yl Salluap| e

‘'sassao0.d
J1abue| jo Ued se Buiyoless pue
Puiios se yons swyiioble
UOWIWOD JO 8sN 8y} saljiiuap|
paynusp! Arenpiaipul
8Q 0] Wall yoea a|qeus 1ey] swall
pale|al Jo UoI09||00 B Buiquosap
SOlISIBI0BIBYD JO 18S B Saliluap| «
uoleuIojul
Jjo uondAious pue uoissalduwoo
Jjo sajdiound aiseq ayi Jo
Buipuelsiopun Ue satesisuowa(e
Joy10 yoea Yim 81eolunuiwiod
eyl 8soyl pue sassaoo.d |a|jesed
usamlaq 9ouslalIp ay) sure|dx3 e
W pUNOJE PlIOM 8Y} Ul IND20
yolym s8ss9204d Buipesiunuiuoo
YlIM SWa1ISAS uoliewoul
$90110S9p pue $8sIUb0y

spJed Buipel) Jo Aeliqi| e ul $Y00q
‘gldwexe Jo} ‘'s108/qo spliom [eal
10S 0] wylobje ue / suoionasul
10 18S pasiubooal B Sas
(doz-¢ NNIN) 881
Aiwey e ‘eidwexa Joj ‘uoiew.ojul
JO SWiall pare|al SaINonis e
991 S9SN Yyolym sweb peoq
e ‘o|ldwexe 1o} ‘uswale wopuel
e sey 1l 8snedaq a|geloipaid
10U S| $$820.1d B UByM Salliiuap|
18W S| UoNIPUOD € [un sdoo| Jo/pue
Sewl} Jo Jagquunu paxij B SUORONSUI
10 sdnoub pareadas spnjoul jeyl
suononIsul / swyiloBe salnuap|
awll} sWes ay}
e panIas aq 0} eised Buyood pue
aones ojewo] Bupew ‘ejdwexs Io}
‘sdays |9|esed ajdinw jo Bunsisuod
asoy] yum sdais jo aousnbas a|buls
e |0 BunsIsuod saiANoe saieduwo)) e

(@ pue
B0Z- I NNIN) BU81O ,S18ylo pue
umo Aw Buisn Aem pasiueblio
‘[ea1f50| B Ul uoliewIoul

slapJo pue sdnolb ‘s109(|0) e
sake usalb aney 4O
papuey-la| ase noA ji dn aul
‘s|[eqiaxseq LON N |[ey WAB
8y} Ul s|jeq Bunos|joo ‘sidwexs
10} LON PUE HO ‘ANV 4l
Buipnjour Buuiyy [eolbo

UO PasEq SUOISIOap SaMe|N «

dals yoes Jo 108}J0

oY1 Ajes10aid saqlosep pue

$s9004d € Ul sdajs saliuap|

uonnedal pue

uono8|es Yim asoyl Buipnjoul

‘suoloalip o sadioal ‘e|dwexa

J10] ‘suoneniis AepAiane

woJ) swylioble/suolonisul

JO $90UBNbBS SMOJ|04

(e€1-0 NNN)

way) usemiaq sdiysuolije|a.
a|dwis pue ainjesaduwal
pue 87IS IN0j02 SE Yons
uonew.ojUl Jo S198(qo ul
S92UBJAJIP PUE SBNLE|IWIS
‘sulened salnuap|

IN0J02 0} BUIPI0dOE SHILI]
Aol sdnoub ‘sidwexs Jo}
'(002-0 NNl ‘d02-0 NNIN
"B02-0 NNIN) seobajed
a|dwis ol wieyl sdnolb
pue s108(qo sallisse|)
spuey

Buiysem ‘sidwexs Jo}
‘wyioBre ue / suoponiisul
2110 0] ¥sel Aephions

ue ul sdejs urew ayl
S8oUBNbas pue saliiuap| «

syJewyosuag

agl-¥ HOL
‘Aousiolje pue $Sauj0a.Iod
10} swyioBe aredwod Ajewlojul ueo |

egl-¥ HOL
‘alelidoidde 1sow ey S|
yolym Ansnl pue suonnjos aAljeusslfe 1surebe
$955900.d 8s8y] 8/edulod ‘'SUOIIN|OS PlIOM [eal
Ul pasn sessa00.d ay] |lelep Ul 8q1I0Sep UeD |

oA yuno4

agl-¢ HOL ‘wielshs

pliom [eal e Jo s1oadse Jeinoiued

9Q110s9p 01 |9pOouUl Uoeullojul

Ue asn Ued pue uolewloul jo

Buipuelsiapun Aw Buidojarep we |
egl-¢ HOL

sws|qo.d jusialip

BuiAjos Ul SN Jlay) Alnuspl ueo

pue ‘8]eolunwiwiod Asyl Moy pue

$955920.1d UOIEWOUI [EJUBWEPUN)

1UBJBHIP 8qLOSap UeD |

[oAe7 paIyL

egl-¢ HOL
"UOITRWIOLUI JO SWa)I Pate|al 81n1oniIs
UBO | '8W00IN0 S)I puB $58001d
e Jo uoieiedo ay) pueisispun |

oA puodas

egl-1 HOL
‘Rem [ea160|
e Ul uolfewlojul esiueblo ued pue
s1deouod Buyuiyl [euoneindwod
8102 J0 8sn Buiyew aw punoJte
plIOM 8U} Ul 8S8201d U0
JUBWIWOD pue 8J0|dxs UeD |

[ona7 1114

egl-0 HOL
‘uolewlIoUl Jo s108(qo
ul suiened Ajpuspl ued pue
syse1 AepAiane Jo A1sleA e ul
PaAJOAUL S85S820.d BuuIy}
[euolreindwod a10jdxe ueo |

|ana Apeg

sawo09)nQ pue sasualadxy

DUMUIY) [2UOIBINALIOD YONOoIY) ploMm a8yl Duipueisispun | 1esiuebi()

18

"UOIIOBIISOE. JO S|OAS| JUBIBJIP UBamIag
$855820.d Uoljew.ojul a1e|suel} sieindwoo
1ey1 Buipuelsiopun Ue salelsuowa(e
AVNLVYS
pue swaisAs juswAed aull uo ‘ejdwexs Io}
‘'sa1B60j0uy29] Xo|duw0oo UIspow JO S199€)
o1J109ds awWos Jo s1deouoo [eoluyos) BulAjiepun
ay1 Jo Buipuelsiopun Ue salessuowa(e
1Byo moyj ‘weibelp
MO} Blep ‘welbelp ainoniis ‘Buipleoghiols
‘opooopnasd ‘ejdwexs Joj ‘suonejuasaidal
ubisep paldesoe ul passaidxe sue|d
welboud jo Buipuelsiepun Ue salelisuoula e
slewllo} jo abuel B Ul UOITBUIO)UI
ale|ndiuew pue jusesaidal sieIndwoo
MOy Jo Buipuelsiopun Ue salessuowa(e
abenbug)
[BNIX8] B Ul S8INjONJIS BlEP JO suoleluasaldal
Jjo BuipuelsiepuNn Ue salelisuowa(e
abenbue| [enixal e ul usnum welboud
B Ul SI01J9 XBlUAS sure|dxe pue saljiuap|
palejal 8Je 10NJ1SU0d aWes
8y 10} SUOIONISUI [BNIX8] puB SUOIoNJISUl
[ensiA moy Jo Bulpuelsiepun ue salelisuowa(e
abenfBue| [enixal B Ul SUOIEIND[BD [BoLBWINU
pue sa|gelieA ‘uonnadal uonoses ‘eousnbas
SB ONS $10NJISU0D |041U0D DISEQ SPUBISIOpUN o

‘ABojouyoal
Bunndwoo ul pasn sanbiuyoal uondAious
pue uolssaldwod ajdwis spueisiapun
‘s1oxoed
pue Ssaippe ‘UoAI9dal1 4apuas Jo s1daouod
ay1 Bulpn|oul SHI0MIBU JBAO UOITeWIo)Ul
aJeys pue 81eoluNWWIoD slaindulod
Moy Jo Buipueisiepun ue ajelisuowa(e
$8IN10NIIS BIBP PUB SB|GBLEA UIIM 9SOU]
Buipnjoul S1oe.IXe 9P02 Sule|dxe pue speay e
Wwa1sAs 1eIndwo9 e ulyiim painosxe
pue PaJols dJe SUOIIoNJISUl 89P0 Bulyoewl
MOY puUB 81n108]IydJe uUuewnap UoA
a1 Jo BuipuelsiepuNn Ue salellsuowa(e
S82IASP JUBJBYIP
Uo 1uaJallip 8q Aew SIyl 1eyl Spueisiepun
pue ‘ebedgam e Jo aoueieadde ay] U0
afenBue| dnylew JO 108)J8 8yl $8qliosa(
sofedgem Jo seseqelep
‘sweJBoid Ul uonewIoul PaINIoNIIs
Jo BulpuelsIepUN UE salelisuowa(e
uoneluasaidal
awes ay) Ajjoexe ul paussaldal ag pjnoo
uonewJojul JUBIBHIP 1Byl SpueIsiapun
Wwia1SAs [euolieluasaidal
8UO UeY] 8JoW Ul pajuasaidal g pjnoo
UoleWIOUI BWIES U] 1eyl SpUEelsIapUN »

|9|[esed moy s1oipaid pue surejdx3

1oulB)UIl 8Y] ‘a|dwexs

10} ‘UOIBLUIOJUI 81BYS pUB 8] 0IuNLILLOoD
0] Pasn pue PaJOBULIOD aJ. SHIOMIBU
MOY JO BuIpuB]SIepUN U. S8JBISUOLLIS(]

wiay) usamiaq

diysuonejal 8yl pue abeiols pue Alowaul
‘Jossao0ud 8y} Jo asodind syl sequoseq

'sojydelB ayym

pue »oe|q ‘1Xa] ‘slaquinu ‘a|duiexs Jo}
‘Areuiq ul pejussaidal si eiep Ja1indwod
|[e 1ey Buipueisiapun Ue sajesisuowaq

JoBJIOIUI SOIIAIOR

uoIoNIISUl Yors

ybnoly) suns weiboid syl se abueyo
‘eoueieadde pue uoloalip ‘uonisod
‘g|dwrexs Joj s108(qo Jo seiadoid
ay1 Moy Buipnjoul ‘sunJ 11 usym op
[m abenbue| Bulwwelboid [ensia e
ul welboud 819|dwod B 1Teym S101paid
abenbue| buiwwelboid

[ensiA e ul (uonnadal [euonipuod

pue Sa|geleA Buipnjoul) suononasul
[enpiAipul Jo Buiuesw ayi sule|dxg

‘sjinsal ay] 1ndino
pue ‘uolewloul eyl
2101S pue ssa20.d
‘Indul se uoiewlojul
oye1 slaindwoo
1ey) Buipuelsiepun
ue seressuowaq e
HNsel (1M JoBye
1USWBAOW IO [BNSIA
‘olpne 1eym ‘ajdwexs
10} sunJ 11 usym
op ||m abenbue)
PuiwwresBold ensia
e ul weiboid e reym
s101pald pue suie|dx3 e
(uonosjes
pue uonnadal
paxl} ‘seouanbas
Buipnjour) abenbuel
Buiwwelboid
[ensiA e Buisn usym
SUONONJISUI [eNPIAIPU
jo Buluesw ay}
Jo Buipuelsispun
ue sajesisuowaq e

(slioop onewoine
se yons s109(go
pue saoueldde
ul uspply esoy}
Buipnjour) plom

8] Ul S90IAP
Bunndwoo
saliusp| o
Jaded uo umelp
smole ‘e|dwexa
10} suolonsul
0o 8ousnbas e
yum pajussald
usym op [lim

uosiad 1o 8218
B Jeym S10Ipald
uolnewloul pue

$S900.4d Juasaldal
ued sjoquiAs moy

Jo Buipuelsispun

ue sajesisuowa e

syJewy

auag

Ol-¥ HOL

Jeindwiod jo uonelado ay) pue abenbue)
[ona| ybiy usamiaq diysuoneal ayl puelsiapun |

av - HOL
‘uonn|os paleald Ajlelbip e Jo ainyosiyole
pue uolelado |[eJeA0 syl urejdxs ueo |

ey - HOL
‘obenbue| Bulwwelboid [enixal
B Ul $8INJ0NJIS BIEP pUB S1ONJISUOD pUEBlSIepUN |

[oA8T yuno4

arlL-¢ HOL 19U10 yors yim

10BISIUI JeY] S|OAS| 8I/eMpIBY PUE 8/BMIJ0S

a|diynw 8Aey yoiym swissAs Bunndwoo jo

uolelado pue ainjonuis 8yl 8qLUosap Ueo |
ey l-€ HOL

"uoiewlouUl painonis Bunuasaldal

10} s10nJ1sU0D abenbue| puelsiepun |

avl-¢ HOL

Bvl-¢ HOL

[oAST paIyL

‘'SYIOM]BU

ybnoJy) 10BI81UI pUE 108UU00 ABojouyoal
Bunndwod jo sjusuodwod Asy moy pue
P8I0IS S| UOITeWLIOMUl MOY puelslapun |

‘abenbue)

[eoluyoa areldoidde ur sydeouod
abenbue| Bulwwelbold 2100 urejdxe ueo |

|[9Ae7] puodes

avl-1L HOL

‘uoljeulloyUl
$$900.4d siendwod
MOy pueIsiopun ueo |

evl-1 HOL
‘obenbug|
ay1 Buisn usnum
welbolid e Jo swo2INo
ay) 10ipaid ued pue
abenbue| Buiwweiboid
[BNSIA B JO SUONONIISUl
8] pueisiopun |

[9A97 18414

av1-0 HOL
‘BW pUNOJE PlIOM
ay1 ul ABojouyosl
Bunndwoo Jo abuel
e |0 s8sn Alnuspl pue
yum Juswiiadxs ueo |
ey1-0 HOL
‘ABojouyosl
Bunndwod [043u0d 0}
pasn ale suoioNJISUl
Jo seouanbas
eyl puelslapun |

19na Aleg

19

SaWooNQ pue sasuariadxy

ABojouyos] bunndwon) BuisAeuy pue Buipueisiepun g Jasiuell()

‘AlAIIOBISIUI 9pNjoul yoiym sebed gem sp|ing pue subiseq «
wajgoud uaAIb e Joj} erendoidde
1sow ag pjnom yaiym Amsnl pue ‘Buiyodtess pue Buiios
1o} asoy} ‘ejdwexs 10} swyylobe uowwod saiedwo) .
uoneoloads
sjuswalnbal B WoJj UoIN|OS 8JEM)OS J0/pue [edisAyd
e dojanep 01 yoiym uo wuope|d areudoidde ue s108|9S
abenfue| [en1xa) & Ul UOITBUIO)UI
1uesaldal 01 saunjonils erep ajeudoidde subiseq e
a1eldoidde asleym
sen(eA o1j199ds JO Pealsul SUOIIONJISUI UIYIM SB|JeLBA
sasn yoiym abenbue| [enixal e ul welbold e salpy
1ON ‘HO ‘QNV — sioresado o160 Jo asn ayew ue)
suodal uolien(eAs pue 1se] SalIA e
2160| pue xeluAs ‘B9 sious paiiuspl
1O 8InjeU 8y} Usamiag ysinbunsip ueo pue apod sbngag
uolewojul
painionils Juasaidal 0] eseqerep [euolelel e sdojpasq e
eyo mojl ‘welbelip mojj elep
‘welBelp ainons ‘BuipieogAhiols ‘epooopnasd ‘ejdwexa
1o} seibojopoylew ubisep paidaooe Buisn ubisep e sejeal)
uonnadal
puUB UOI08|as ‘@ouanbas se yons S}onJisuod pue sa|gelea
sasn yoiym abenbue| [enixal e ul welbold e salpy o

sjuawaiinbal Aoy BulAyuspl
‘S1X81U09 JO abuel B ss0Joe suoneoloads wejqoid sesAeuy

sofenbue)
dn-yrew areudoidde Buisn
safbed gom sp|ing pue subisaq

(eBenbue) fensin
e ul) sindul pjiom [eas 01 spuodsal
PUB SBAI80aJ YOIYM 8P00 SOIIAN
(ebenbug) [ensia e ul) sassad0.d
|a|lesed usamiag UOIEDIUNWIWOD
S| 818y} YOIYM Ul 8p00 SOIUAN
(ebenbug|
[ensiA e ul) swelboidgns pauweu
o1ul suononisul pateal sdnoly) .
2160 welboud
Ul SI0JIS 1091100 PUE pull UBD »
UoNN|OS 2JeM1OS 10
/pue Bunndwod [eaisAyd e a1esld 01
uollewlIoUl pue $8s$820.d saluap!
pue Juswalels wejqoid e sloudiou] .

aseqelep aJlj 1ej} e 1o abenbug)
[BNSIA B Ul 8IN1ONJIS BIEP 1SI| B YIIM
SyIom ‘ejdulexs Joj ‘seseqerep Io
sweiBold ul uoiewllojul paInonns
sale|ndiuew pue sussaldey -

So|qeleA
aidiynwi Buisn pue s}oNJIsSu0o

Buiuiquiod ebenbue| [ensia e Buisn
welboud e spjing pue subiseq

wiay} xij 01 moy

S81B0IPUI PUE ‘UONIN|OS

pawweiboid syl pue

uonduosap sel ayl

usamag saydlewsiw
Aue saljijuap|

sAey moule Buljjonuod
10 J8JUN0d 8J0JS ‘Jawl} B
10} 8p02 asnai ‘sl dwexa
10} ‘Ajerenidoidde
suonn|os snoinaid Jo
s10adse sesnal pue
Buinjos waejqoud ul
sulened saynuep|

uonedal [eUOIPUOD
puUe Sa|geleA
Buipnjour sbenbue
Puiwwresboid ensin e
ul swelboud seeal)

sjuswanoiduw

s1sabbns pue swelboid
/SUONN|OS SejeneAs

sbng/siols

1081100 UBD pue papuaiul

SEeM JeUM Op 10U S80P
welboid e usym salusp|

abenbue| bulwwelboid
[ensiA e ul (uonnadal
paxi} pue uolos|es
Buisn) saniAiloe 1No Alled
0] sweiboid seeal)
3se) ayl Buiajos
SpJeMO} S8INgIIU0D
yoes moy pue dajs yoes
wioJ) Indino pa1oadxe
ay1 Buiure|dxe ysel e
BA|0S 0] SUOIONJISUl JO
2ousnbas e s1oniIsu0)
syed
a|geabeuew alow Jajews
OJul umop wisy) Buesiq
Ag swaejgoud saydwis

suoloNIIsUl JO 188
© Ul SI01I9 S1081100
pue ssainusp|
spiemyoeq
/spJemioy}
:suolonAsUl
[BUOIOB.IP
‘g|dwexe 1o} ¥se] e
N0 A1iBd 0] 92IA8P
a|gewwelboid
10} wyobje
/suononJisul
JO 8ouanbas
o|dwis e subiseqg

sylewyouag

EGl-¥ HOL
"suoisioap Aw Apsnl
0] sjuswinBe pauoseas Bupew 1s|iym uolew.oul Juasa.d
pue ssao0.1d 01 suonnjos Bunndwoo sulal pue arenjeAsd
‘PIINg ‘ubisep 0} sj00} Juswdolensp aleldoidde 108|8s UeD |

[oA®7 yunoy

eg1-€ HOL
‘sjuswalinbal
UO Paseq suoln|os Buindwoo aulal
pue ajeneAs ‘pling ‘ubisap 0} s|00}
wewdojansp arendoldde 108[8s uBD |

[9AS7 paIyL

EGl-¢ HOL
‘obus|jeyo ubisep e 01
asuodsal ul suoin|os
Bunndwoos sjenjess pue
dojensp ‘818810 UED |

oA puodas

ESL-1 HOL
‘abenbue)
alelidoidde ue Buisn Msel
uaAIf e 1no Aued 01 sweiboid
a|duis Buipiing Aq s|iMs
Buinjos wa|jqoid dIseq
10 8bUEl B 8]BJISUOWIBP UED |

[onaT 1s14

EG1-0 HOL
Jus|eAINbad JO S80IN8P
a|gqewwreiboid
Buisn wiay) uni
puUe SUoIoNJISUI
10 9ouanbas
e dojensp ued |

|ana Apeg

sawo09)nQ pue sasualadxy

SUOoIN|0S Bunnduwoo Bunsa) pue Buiping ‘Buiubiseq ¢ Jasiuebl

20

5

| -
-

i

Hi

L \M

\

)

22

Organiser 1 Early Level
Understanding the world through computational thinking

More information:

Process - sequences of steps and changing states

Through awareness of everyday tasks and objects, learners are able to identify the beginning, intermediate steps, and
ending stages of a process. Learners will start to understand cause and effect as they see steps changing an object from
a starting state to an end state.

Information - Classifying objects

Learners can identify the basic features of objects, and classifying them according to different attributes such as colour,
size, and temperature. They can spot similarities and differences in objects and identify simple relationships between
them. Learners can also identify patterns in objects and information.

What this learning may look like:

Information - Classifying objects

Learners will gain experience identifying basic features of objects and classifying them according to different attributes'
such as colour or size. Objects can then be compared according to an attribute - bigger, softer, noisier - and then sorted.
A good example of this would be asking learners to sort a pile of Lego into an order they choose, perhaps tidying it into a
organiser storage, drawers or bags. Will learners choose to organise by colour or size and what will their exceptions and
special cases be? It is useful for the learners to realise that objects have more than one attribute and so there are different
valid ways to categorise and sort a collection of objects. Ask learners to think about the relationship between groups of
objects, such as the order you sort the classified group. For example, do the Adventure books go next to the Science
Fiction books or the Action story books on the shelf?

Process - sequences of steps and changing states

As learners experiment they will be able to identify and sequence steps that
give a desired end state. Marble runs or domino runs are great examples of
this, where the change of state is both obvious to see and fun too! There are
a number of videos of amazing Rube Goldberg machines too, such as the
music video for OK Go This Too Shall Pass?. Learners can experiment with
changing state in different ways. They can pour water down drain pipes then
change the direction of the water by moving the drain pipes.

@l L G v

| can explore computational thinking processes involved in a |dentifies and sequences the main steps in an everyday
variety of everyday tasks and can identify patterns in objects task to create instructions / an algorithm, for example,
or information. washing hands

TCH 0-13a * Classifies objects and groups them into simple categories

(links to MNU 0-20a, MNU 0-20b, MNU 0-20c), for
example, groups toy bricks according to colour

* |dentifies patterns, similarities and differences in objects
or information such as colour, size and temperature and
simple relationships between them (links to MNU 0-13a)

"http://bit.ly/CSScot1, 2 http://bit.ly/CSScot2

Organiser 2 Early Level
Understanding and analysing computing technology

More information:

Process:

Learners can read and understand various representations of simple processes (e.g
picture cards with arrows) when reading from different representations such as blocks in
a visual language or a flow diagram.

Information:

They can understand simple pictorial, or physical representations of real-world
information and make deductions about the real world from such representations.

Computing technology:

Learners appreciate the world around them contains computing devices that perform useful activities.

What this learning may look like:

Learners can use different representations, such as looking at a sequence of cards with arrows printed out on them.
They can then predict what toy robot would do if it was given those instructions with a particular starting point on a map.
This could be simulated with a person playing the role of a robot if you don't have a robot. Learners can appreciate
pictorial instructions, such as instructions for building Lego models.

Learners can understand simple ways of displaying information and use this to reason about the world. For example, if
there are jars to represent different primary colours, each class member puts a coloured bead into one of the jars, and
learners identify which was the most popular colour by observing which jar was fullest.

Learners are explicitly introduced to an everyday object with
embedded computing technology - for example learning about an
automatic door and exploring how the sensors work by sneaking
up to it. They can pick between pictures of everyday objects,
identifying those making use of computing technology. They could
also do this on school excursions.

| understand that sequences of instructions are * Demonstrates an understanding of how symbols can
used to control computing technology. represent process and information

el * Predicts what a device or person will do when presented
| can experiment with and identify uses of a range of with a sequence of instructions for example, arrows
computing technology in the world around me. drawn on paper

TCH 0-14b

* |dentifies computing devices in the world (including those
hidden in appliances and objects such as automatic
doors)

23

24

Organiser 3 Early Level
Designing, bullding and testing computing solutions

More information:

Learners can understand how a short sequence of precise instructions can be interpreted by a device to carry out a
simple task, for example moving a robot or graphic turtle from one place to another. They can understand the difference
between a “correct” and “incorrect” instruction sequence. Learners can identify and correct any errors in the sequences
they create.

What this learning may look like:

At this stage, learning is focussed on giving simple instructions either to teachers, to other children, or to toy robots.
Learners should be able to find and correct errors in instructions when the robot —
does not do as they expected. -

Although Beebots' have been a common sight in Primary schools for many
years, the instructions they follow are not visible to learners. They are hidden
away inside the robot. An alternative is to use Ozobot, which follows a line

drawn on paper and does different things depending on the colours of the line.
Ozobot’s instructions are encoded on paper, and learners can be asked to ‘read’
the instructions and predict what the robot will do. Ozobot? can be used at Early,
First and Second level.

There are many other toy robots available such as Marty®, Sphero*, SPRK®, Ollie®, or
Dash and Dot’”. Many of the other new robots on the market are controlled by a block
interface on a computer or tablet app, so learners can follow along as the robot carries
them out. Some of these robots (such as Marty and the Sphero robot ranges including
Ollie and SPRK) have many different ways to control. Robots can be controlled by direct
commands (Marty can use an app to control it like a remote control car), drawing lines
(controlling the Sphero robot ranges using the Draw tool in the Sphero Edu hub app?,
ideal for Early level learners) or using block-based apps like Tynker® (similar to Scratch™,
this would be more suitable for learners at First and Second level) or using one of the
many Early Years or Level 1 activities in the Sphero Edu hub. Learners could also build
tracks or mazes for a robot to negotiate.

For schools that can’t afford to buy robots, there are many tablet apps and online games available that allow learners to
program a robot. For example, Beebot have a web-based emulator'. There are also simple board games available, such
as Bits and Bytes' and Robot Turtle'® which teach young children the concepts of creating and following step by step
instructions.

Benchmarks:
| can develop a sequence of instructions and run them using » Designs a simple sequence of instructions algorithm for
programmable devices or equivalent. programmable device to carry out a task for example,
TCH 0-15a directional instructions: forwards backwards

* |dentifies and corrects errors in a set of instructions

Thttp://bit.ly/CSScot3, *http://bit.ly/CSScot4, http://bit.ly/CSScot178, *http://bit.ly/CSScots, Shitp://bit.ly/CSScot6, Shttp://bit.ly/CSScot7,
"http://bit.ly/CSScot8, ehttp://bit.ly/CSScot9, *http://bit.ly/CSScot10, °http://bit.ly/CSScot11, "'http://bit.ly/CSScot12, *http://bit.ly/CSScot13,
http://bit.ly/CSScot14

Organiser 1 First Level
Understanding the world through computational thinking

More information:

Process:

Learners can identify and use (in simple English language) the control flow concepts of sequence, selection and
repetition. They should be familiar with sequence from Early level, as a set of step by step instructions. Learners can
understand simple sequences and correctly carry out a role assigned to them in a process such as a game, story or dance.

Information:

Learners will begin to understand more complex logical constructs including AND, OR and NOT in order to group real
world objects or follow verbal instructions requiring decisions to be made

What this learning may look like:

Process:

Learners will be able to demonstrate knowledge of processes by being able to
follow instructions in a recipe or understanding their role in tidying the classroom
or country dancing. Learners can follow sequences of steps such as directions
on a pirate treasure maps and instructions to carry out an activity such as
making a paper airplane. They can identify and describe the steps involved in
games and movement dances such as the Macarena or Locomotion.

Learners can identify similarities and differences in a set of steps in a process. , ‘
They can spot repetition, patterns that are identical or where steps are similar.
Learners can describe how patterns are similar (such as ascending or descending numbers in songs or games).

Learners understand how decisions can be used to introduce selection between alternative processes IF a condition is met
THEN do something, ELSE do something different. Learners can explore selection statements through everyday situations
such as learning to cross the road. IF the green man is lit THEN look both ways and cross the road ELSE wait patiently.

Information:

Learners can follow logical instructions and make decisions involving AND, OR and NOT. It might be they are grouping real
world objects (such as collecting all the Lego blocks but NOT the red ones, or collecting pencils OR pens in the classroom)
or follow verbal instructions (Stand at the back if you are tall AND like singing).

| can explore and comment on processes in the world around * Follows sequences of instructions/algorithms from everyday
me making use of core computational thinking concepts and situations, for example, recipes or directions, including those
can organise information in a logical way. with selection and repetition

TCH 1-13a * |dentifies steps in a process and describes precisely the

effect of each step

* Makes decisions based on logical thinking including IF,
AND, OR and NOT, for example, collecting balls in the
gym hall but NOT basketballs, line up if you are left-
handed OR have green eyes

* Collects, groups and orders information in a logical,
organised way using my own and others’ criteria (MNU
1-20a and b) o5

Organiser 2 First Level
Understanding and analysing computing technology

More information:

Process:

Learners can read, understand and explain representations of processes expressed in a programming language, with
control flow elements of sequence, selection and fixed repetition. Learners understand how conditions can be used to
decide between alternative sequences of steps.

Information:

Learners can understand diagrams which illustrate key aspects of information (such as Venn and Carroll diagrams).
Tables and diagrams are introduced as a way of representing information about collections of objects.

Computing technology:
Learners know about input devices such as sensors, touch screens, keyboards and mice, output devices such as

screens, speakers, and motors, and how these are connected to a processing unit. They can make links between
information and process concepts and what is going on inside computing technology.

What this learning may look like:

—

" | Learners can “read” the blocks in an icon-based visual programming language such as
- | Scratchdr! to understand what a simple program will do. They can identify when there are
mistakes in a program written in a simple visual language.

Learners can understand a range of diagram types which display information. They
can look at a diagrams and charts, and answer questions based on the information
presented graphically or numerically.

Learners can learn about different input devices (such as keyboards, mice, microphones)
that send signals into computers; about how the computer processes the signals; and
how the computer then sends signals to output devices (such as monitors, speakers) so
that we can see/hear the result. Learners can then explore different computer systems
such as games consoles or mobile phones to identify which input and output devices are
used with that system. Learners may also tinker with the insides of an old computer if one
is available.

Learners can make the link between the programsming concepts they are learning and what is going on
inside every-day devices. For example, a device playing a beeping sound is repeating the same action [l)
(playing a single beep and pausing) many times. A ‘play pop sound’ command in ScratchJr will cause pop

the device to make a pop noise.

| understand the instructions of a visual programming * Demonstrates an understanding of the meaning of

language and can predict the outcome of a program written individual instructions when using a visual programming

using the language. language (including sequences, fixed repetition and
TCH 1-14a selection)

* Explains and predicts what a program in a visual
programming language will do when it runs for example,
what audio, visual or movement effect will result

* Demonstrates an understanding that computers take
information as input, process and store that information,
and output the results.

| can understand how computers process information.
TCH 1-14b

26 Thitp://bit.ly/CSScot15

Organiser 3 First Level
Designing, bullding and testing computing solutions

More information:

Learners start to understand how they can use simple programming constructs, such as repetition, to achieve desired
behaviour in a more concise manner. They are introduced to the idea that different instructions can be used to achieve
the same behaviour, and that some are better than others.

What this learning may look like:

Learners will use a visual programming language to create simple
programs and animations. An icon-based environment such as
would be best, as they do not rely on good literacy skills. Hour of
Code’s has a course aimed at 4-6 year olds' that would be ideal
for playing on an interactive whiteboard.

For schools with access to tablets, many apps allow learners to
program in a simple way. Apps such as Scratchdr?, Cargobot?®,
Robot School*, Move the Turtle®, The Foos®, Kodable’, and Daisy
the Dinosaur® are appropriate, particularly those which rely on
pictures and symbols rather than text. To give children more
interesting or complex problems to work on, they can be given a
partly completed program and asked to write the code to extend
one part of it.

Robots are an engaging way for learners to develop simple algorithms. Learners using Ozobot (see Early level) at First
level would be expected to start using colour codes to program the robot.See the Early level notes on robots for more
ideas. Companies producing robots such as Marty® and Sphero'® provide lesson plans and ideas for educators.

Lego WeDo''" is a great way for learners to explore with creating programs in an icon-based environment. The software
features two Lego characters who guide learners through different challenges.They build mechanical solutions using
Lego pieces and develop an algorithm using the software.

There are also simple board games available, such as Bits and Bytes' and Robot Turtle', which teach young children the
concepts of creating and following step by step instructions.Learners could make their own programming board game™.

| can demonstrate a range of basic problem solving skills by » Simplifies problems by breaking them down into smaller

building simple programs to carry out a given task, using an more manageable parts

appropriate language. * Constructs a sequence of instructions to solve a task,
TCH 1-15a explaining the expected output from each step and how

each contributes towards solving the task

* Creates programs to carry out activities (using selection
and fixed repetition) in a visual programming language

= Identifies when a program does not do what was
intended and can correct errors/bugs

» Evaluates solutions/programs and suggests
improvements

"http://bit.ly/CSScot16, 2 http://bit.ly/CSScot15, @ http://bit.ly/CSScot17, *http://bit.ly/CSScot18, shttp://bit.ly/CSScot19, ¢ http://bit.ly/CSScot20,
"http://bit.ly/CSScot21,2http://bit.ly/CSScot22, ® http://bit.ly/CSScot178,"°http://bit.ly/CSScot5, 'http://bit.ly/CSScot155, ?http://bit.ly/CSScot13,
Bhttp://bit.ly/CSScot14, “http://bit.ly/CSScot24 27

28

Organiser 1 Second Level
Understanding the world through computational thinking

What this learning may look like:

Process

Learners can identify and describe the properties of simple systems such as parallel
processes. Learners could play a part in a physical process (such as in a playground
game or dance) in which multiple activities are carried out at the same time (parallel). For
example, teams of learners could race to complete a process (such as a balloon party
game or tidying their workspace). Learners then discuss the effectiveness of different team
strategies. Sometimes more than one type of activity might be carried out at the same time
(with individuals or teams having different tasks to complete as part of a bigger goal, such
as tidying the classroom at the end of the day). Learners can identify when two activities
which happen at the same time interact with each other.

Through playing and analysing common games (such as Snakes and Ladders, or noughts and crosses) they can identify
when it is possible to predict what will happen in a process and the circumstances under which it will end. This includes
understanding about randomness, often appearing in games with dice.

Information

Learners will be aware that information can be sorted, and be able to perform a simple
sorting algorithm on real world objects.They could sort books alphabetically or a deck of
Pokemon cards by combat power. There are ‘unplugged’ activities listed for sorting. You
could also watch a video of a sort algorithm being carried out (such as a Lego version of
the bubble sort' or a kids song version? or watching robots do quick sort®.)

Learners could write down all the family members they know, drawing lines between them
to represent family relationships, and then be shown how to redraw the information in a
family tree format. Learners could attempt to form a similar structure with everybody they
can think of in the school - pupils, teachers, admin staff, etc.

| understand the operation of a process » Compares activities consisting of a single sequence of steps
and its outcome. | can structure related items with those consisting of multiple parallel steps, for example,
of information. making tomato sauce and cooking pasta to be served at the

TCH 2-13a same time
* |dentifies algorithms/instructions that include repeated

groups of instructions a fixed number of times and/or loops
until a condition is met

* Identifies when a process is not predictable because it has
a random element, for example, a board game which uses
dice

* Structures related items of information, for example, a family
tree (MNU 2- 20b)

* Uses arecognised set of instructions / an algorithm to
sort real worlds objects, for example, books in a library or
trading cards

' http://bit.ly/CSScot25, http://bit.ly/CSScot26, *http://bit.ly/CSScot27

Organiser 2 Second Level
Understanding and analysing computing technology

More information:

Process

Learners can read and understand representations of processes in a programming language, identifying examples of
sequential, selective, repetitive and parallel control structures and uses of variables. They can pick out and describe the
precise meaning of individual structures, as well as predict the outcome of programs using all of these types of structures
expressed in a well-specified language. This might be a visual block language such as Scratch, Alice or Kodu, or a text-
based language such as HTML.

Information

Learners understand how different types of information are stored by the computer, for example the basics of how

text, sound and images are handled by the computer. They understand that digital representations are a lingua franca
allowing widely different kinds of information to be represented in a uniform format that can be transmitted over networks
and interpreted by a wide variety of different kinds of device, for example a video from your mobile phone can be emailed
to a friend and displayed on their television with a sound track from another friend.

Computing technology

Learners understand that many modern computer applications are made up of many computers connected in a network.
They understand the principles of how information can be transmitted between networked computers, such as by email
or when accessing web pages. They understand when using various applications, such as web browsers and search
engines, where the information is stored and how it is transmitted on request.

What this learning may look like:

Process

Learners are now able to read and reason about more complex code in a visual
programming language, including how parallel processes interact. They can practise these
skills by completing pencil-and-paper exercises recording step-by-step operation of the
code and changes in variables. Alternatively they can verbalise their understanding of the
operation of programs in discussion with their peers and teacher, which deepens learning
significantly.

The Royal Society of Edinburgh Starting From Scratch'
resources include activities where learners can make
predictions about what blocks of Scratch code will do
when the flag is clicked. This resource pack also has
useful activities for teaching computing technology.

Information

A range of unplugged-style activities can be used to help pupils understand how different sorts of information are
represented by the computer. There are many unplugged activities available from CS Unplugged?, Teach London
Computing?®, a Little Bit of CS4Fn*, Barefoot Computing® and Google’s Exploring Computational Thinking®. These will be
useful across all the Organisers and levels.

Computing technology

In addition to a greater depth of understanding of how a computer works, pupils will also be aware of the basics of how
computer networks operate. Developing this awareness can be set within the wider context of communicating networks
from everyday life.

" http://bit.ly/CSScot44, *http://bit.ly/CSScot39,°http://bit.ly/CSScot40,*http://bit.ly/CSScot4 1 http://bit.ly/CSScot4?2 thttp://bit.ly/CSScot43 29

| can explain core programming language concepts in * Explains the meaning of individual instructions (including
appropriate technical language. variables and conditional repetition) in a visual
TCH 2-14a programming language

* Predicts what a complete program in a visual
programming language will do when it runs, including
how the properties of objects for example, position,
direction and appearance, change as the program runs
through each instruction

» Explains and predicts how parallel activities interact

* Demonstrates an understanding that all computer data
is represented in binary, for example, numbers, text,
black and white graphics.

* Describes the purpose of the processor, memory and
storage and the relationship between them

* Demonstrates an understanding of how networks
are connected and used to communicate and share
information, for example, the internet

| understand how information is stored and how key
components of computing technology connect and interact
through networks.

TCH 2-14b

30

Organiser 3 Second Level
Designing, bullding and testing computing solutions

More information:

Learners use more complex control flow structures. They start to understand how crucial aspects of a process being
modelled can be described by variables. Through writing programs which process information, learners begin to
understand how program output varies according to program input.

What this learning may look like:

Learners will use their knowledge and understanding from the previous two Organisers to design and build computing
solutions, such as:

e Games made in Scratch' or Kodu? to explore choice / decision making
processes

* Secret codes created using simple cyphers

* Animations created in a block-based environment like Scratch, Tynker®
or Hopscotch* to explore concepts of repetition and parallel control

* Models built in Minecraft® to represent information about the real-world "

* Simple web pages made using HTML and CSS to present / represent
information (Mozilla Thimble® is a great way to make web pages)

* Mobile apps created in App Inventor’

* Simple (flat-file) databases

When using a block-based environment, it is best to start with animations using loops and repetition. Later, learners can
move onto write algorithms using variables to describe more complex control flow processes including event handling
(such as keeping track of health points) and message passing between processes. Creating simple games is a great
way to use variables in different ways, such as keeping track of scores.

Learners could demonstrate that they can use different ways to solve and problem and evaluate which way is more
effective by creating a racing game in Scratch. For example - would it be a two player race once round a track, a timed
single player game or multiple players doing laps? Other considerations are what to do if the car drives off road — will
the car slow down or blow up. Pupils will be able to discuss different ways to implement these and to discuss which
methods would lead to a more playable game.

Learners can also design and build robotics as computing solutions.
Lego Mindstorms® is popular, particularly with their annual First Lego
League® competition. An alternative to Lego is Vex Robotics'®, and they
also run UK and worldwide competitions'.

There are also robotic options that require less mechanics, such as
Ozobot' (where Second level learners could program a maze or
racing game with variables using the little robot). Sphero'™ and SPRK™
robots use block-based apps like Tynker (similar to Scratch). They’re
also waterproof (and paint-proof!), so learners could build a maze in
a paddling pool for the robots to negotiate or draw shapes by driving
through a puddle of paint first! These robots should not be just ‘driven’ but programmed for example learners could try to
develop the fastest or most efficient program that gets a robot through a maze rather than controlling the robot live.

31

32

The Marty' robot can be programmed to move and

dance, and it also has built-in sensors. This means it can
be programmed to respond to different conditions. After
learning how to instruct the robot to move around based on
distances and angles, they could then tell it to move until a
condition is met, such as moving forward until it bumps into
a walll

As well as being programmable, the Marty robot has an
additional aspect to it, as it needs to be assembled before it
can be programmed and used. This would be a good STEM

challenge or transition activity for older Level 2 or even Level 3 learners, to develop their engineering and construction
skills as well as their programming skills. For schools with access to a 3D printer, learners can create new parts for Marty
in order to address different challenges, for example creating longer arms to try to scoop up or push objects.

Learners could also program on small computing devices such as Makey
Makey'® kits (which use Scratch to create fun interfaces such as plasticine
game controllers and banana pianos!) or BBC Microbit'” devices (a tiny
computer that can respond to shakes or tilting by making noises or showing

different patterns of lights).

| can create, develop and evaluate computing solutions
in response to a design challenge.
TCH 2-15a

Benchmarks:

* Creates programs in a visual programming language
including variables and conditional repetition

* Identifies patterns in problem solving and reuses aspects
of previous solutions appropriately, for example, reuse
code for a timer, score counter or controlling arrow keys

* Identifies any mismatches between the task description
and the programmed solution, and indicates how to fix
them

' http://bit.ly/CSScot11, *http://bit.ly/CSScot28, ° http://bit.ly/CSScot10, *http://bit.ly/CSScot29, *http://bit.ly/CSScot30, ° http://bit.ly/CSScot31,
"http://bit.ly/CSScot32, & http://bit.ly/CSScot33, ° http://bit.ly/CSScot34, °http://bit.ly/CSScot35, http://bit.ly/CSScot36, "*http://bit.ly/CSScot4,
http://bit.ly/CSScot5, "“http://bit.ly/CSScot6, "*http://bit.ly/CSScot178, *http://bit.ly/CSScot37, ""http://bit.ly/CSScot38

Resources and Activities

33

34

Competitions

The following section lists activities and resources that are
suitable for teaching the three Curriculum Organisers at
Early, First and Second Levels. However, there are some
websites that we feel are useful for teaching across the
levels, or feature a large collection of activities.

Computing At School (http:/bit.ly/CSScot45) and
Computing At School Scotland (http://cas.scot)

Computing At School is a grassroots organisation to
support the teaching of Computing Science in schools in
the UK. Membership is free and open to anyone, including
teachers, industry, academics and parents. The CAS
Community Forum is a great place to find new resources
and ask questions. It’s free to join and is a hugely
supportive and collaborative forum. CAS also produce

Barefoot, Tenderfoot and Quickstart resources for teachers.

Computing Science Unplugged (http://bit.ly/CSScot39)

The CS Unplugged resources teach Computer Science
through engaging games and puzzles that use cards,
string, crayons and lots of running around. The activities
introduce students to Computational Thinking concepts
without the distraction of having to use computers.

Hello World (http://bit.ly/CSScot46)

The Hello World magazine is a computing and digital
making magazine for educators that is produced by CAS
and the Raspberry Pi Foundation

Hour of Code by Code.org (http://bit.ly/CSScot47)

Hour of Code takes place each year in December, but the
hour-long computer-based and ‘unplugged’ activities can
be used all year round. They are useful for introducing
concepts such as selection and repetition in a step-by-
step manner before later allowing learners to explore the
concepts in a more open environment like Scratch.

Teach London Computing (http://bit.ly/CSScot40)

Teaching London Computing is a partnership between
Queen Mary University of London and King’s College
London. The unplugged Computing Science activities do
not require a computer and are suitable for Primary pupils.
They involve fun activities, puzzles and a bit of magic!

sources of support, Resources and

Bebras Computing Competition (http://bit.ly/CSScot48)

The UK Bebras Computational Thinking Challenge is a
competition with fun logic and problem solving puzzles.

It is open to pupils and is staged so that all pupils from

P2 to S6 can enter. There are sample questions and past
contests on the website which might be of interest too.
Your pupils can take the challenge in any 45 minute period
during the second and third weeks of November each year.

UK Schools Computer Animation Competition
(http://bit.ly/CSScot49)

An annual computer animation competition for UK Primary
and Secondary pupils. The competition deadline is usually
the end of March each year.

BAFTA Young Game Designer Competition
(http://bit.ly/CSScot180)

An annual computer games design competition for children
ages 10 to 18 years old. Young people can enter a game
concept for the Game Concept Award, or build their own
computer game and enter it for the Game Making Award.
Entries can be from individuals or from teams of up to three
young people. The competition deadline is usually in April
each year.

Activities for teaching karly Level

Organisers

Early Level

Understanding the world

through computational thinking

| can explore computational
thinking processes involved in
a variety of everyday tasks and
can identify patterns in objects or
information.

TCH 0-13a

Understanding and analysing

computing technology

| understand that sequences of
instructions are used to control
computing technology.

TCH 0-14a
| can experiment with and identify
uses of a range of computing
technology in the world around me.

TCH 0-14b

Designing, building and testing
computing solutions

| can develop a sequence of
instructions and run them using
programmable devices or
equivalent.

TCH 0-15a

* |dentifies and sequences the
main steps in an everyday
task to create instructions / an
algorithm, for example, washing
hands

* Classifies objects and groups
them into simple categories
(links to MNU 0-20a, MNU
0-20b, MNU 0-20c), for
example, groups toy bricks
according to colour

* |dentifies patterns, similarities
and differences in objects or
information such as colour, size
and temperature and simple
relationships between them
(links to MNU 0-13a)

* Demonstrates an understanding
of how symbols can represent
process and information

* Predicts what a device or
person will do when presented
with a sequence of instructions
for example, arrows drawn on
paper

* |dentifies computing devices
in the world (including those
hidden in appliances and
objects such as automatic
doors)

* Designs a simple sequence
of instructions/algorithm for
programmable device to
carry out a task for example,
directional instructions:
forwards/backwards

* |dentifies and corrects errors in
a set of instructions

35

36

Organiser 1 Early Level

Barefoot Computing - Patterns Unplugged
(http://bit.ly/CSScot50)

Identifying Patterns

This is an unplugged activity in which pupils work in pairs
to spot patterns in sets of pictures of objects and think of
general statements to describe these things e.g. elephants,
cats, cars.

By identifying patterns we can make predictions, create
rules and solve more general problems. It is a building
block of abstraction, a key skill in computational thinking.
The emphasis of this activity is on pupils thinking what

is the same, what is different and are there general
statements they can make about things.

Socks (http://bit.ly/CSScot5)

Classifying objects Process - sorting

This idea, from the NRich maths project, suggests
resources in a nursery/P1 Classroom to encourage open
ended maths learning. The computational thinking aspects
relate to categorising and sorting.

In the early stages, learners can categorise everyday
objects such as socks by colour or size. Hanging socks on
a washing line in order of size introduces the concepts of
ordering and sorting which become important later.

The prompts “How can we remember which sock goes
where? (when sorting or ordering)” and “Can we sort them
in a different way?” are particularly useful for computational
thinking.

Understanding the world through computational thinking

Packing (nttp://bit.ly/CSScot52)
See also Baskets (http://bit.ly/CSScot53)

Classifying objects

This simple sorting activity comes from the Nrich maths
project. The computational thinking emphasis is on
categorisation of objects.

The ability to categorise objects by their attributes - such
as shape, colour, size is a foundation for handling more
complicated information in later stages. It is useful for the
children to realise that two objects can be the same on
one attribute but different on another. Try including objects
which have similarities on different attributes to start a
conversation with the learner about more sophisticated
categorisation. For example if you include a red toy van,

a red toy ball, a yellow toy ball and green toy car then you
can discuss whether which belong together and why:.

Collecting (http://bit.ly/CSScot54)
See also Tidying (http:/bit.ly/CSScot55)

Classifying objects Process - sorting

Another categorising and sorting activity from NRich, which
could be combined with health and wellbeing and natural
science topics.

Challenging the learners to consider alternative ways of
sorting the collection introduces awareness of a powerful
computational thinking concept which is relevant to

real world data sets. It is also helpful for the learners to
hypothetically consider which other objects would belong
in a collection.

Useful computational thinking prompts from the activity
are “Can you find another way to sort your collection?
What if you sorted them into the divided tray? Is that tray
big enough? (Can you find one that is?)” and “Is there
something else you can think of that could belong here?”

Organiser 2 Early Level

Understanding and analysing computing technology

Barefoot Computing - Bee-bots Tinkering
(http://bit.ly/CSScot56)

Control commands

This activity involves pupils tinkering with simple robots
such as Bee-Bots to find out what they do and how to
program them.

Learners will start to understand the very simple
programming language — the command buttons — used by
robots like Bee-Bots. Learners will be able to give a robot
instructions and predict the effect they have based on the
robot’s starting state.

The command and challenge word cards could be used
for follow up activities, with learners creating instructions
on how to get to a secret place in the school or a guide for
visitors on how to get from the office to particular places in
the building (like your classroom).

Ozobot - basic training
(http://bit.ly/CSScot57)

Simple commands are presented to the robot using
colours

Challenge the pupils to predict what Ozobot will do when it
is given a picture with coloured codes you have prepared
in advance.

Learners will start to understand the simple colour-based
programming language for Ozobot robots. Read the basic
training information in this resource and identify some
simple coloured codes for the children to try out. After they
have played for a while, start asking them to predict what
the robot will do based on just the coloured codes. This
would also be suitable for Level 1.

37

38

Organiser 3 Early Level

Barefoot Computing - Bee-bots Tinkering
(http://bit.ly/CSScot56)

Control commands

This activity involves pupils tinkering with simple robots
such as Bee-Bots to find out what they do and how to
program them.

Learners will start to understand the very simple
programming language — the command buttons — used by
robots like Bee-Bots. Learners will be able to give a robot
instructions and predict the effect they have based on the
robot’s starting state.

The command and challenge word cards could be used
for follow up activities, with learners creating instructions
on how to get to a secret place in the school or a guide for
visitors on how to get from the office to particular places in
the building (like your classroom).

Barefoot Computing - Bee-bots 1,2,3
(http://bit.ly/CSScot58)

Process: Algorithms and Programming

Pupils create sequences of instructions (an algorithm) to
draw the shape of a numeral e.g. 3 using a robot such as a
beebot.

An algorithm is a sequence of instructions, or a set of rules,
for performing a specific task. Programming in this activity
involves taking the algorithm and using it to program a
Bee-Bot to navigate a route tracing out the shape of the
numeral.

Designing, bullding and testing computing solutions

Barefoot Computing - Bee-bots Basics
(http://bit.ly/CSScotb9)

Process: Algorithms and Programming

In this activity pupils design and solve challenges using
a programmable toy. To meet the challenges they create
sequences of instructions (an algorithm) to navigate a
route.

Pupils will write and debug sequences of instructions.

Activities for teaching rirst Level

Organisers

First Level

Understanding the world

through computational thinking

| can explore and comment on
processes in the world around me
making use of core computational
thinking concepts and can
organise information in a logical
way

TCH 1-13a

Understanding and analysing

computing technology

| understand the instructions of
a visual programming language
and can predict the outcome of a
program written using the language
TCH 1-14a
| can understand how computers
process information
TCH 1-14b

Designing, building and testing
computing solutions

| can demonstrate a range of basic
problem solving skills by building
simple programs to carry out a
given task, using an appropriate
language

TCH 1-15a

* Follows sequences of
instructions/algorithms from
everyday situations, for
example, recipes or directions,
including those with selection
and repetition

* |dentifies steps in a process
and describes precisely the
effect of each step

* Makes decisions based on
logical thinking including IF,
AND, OR and NQOT, for example,
collecting balls in the gym hall
but NOT basketballs, line up if
you are left-handed OR have
green eyes

* Collects, groups and orders
information in a logical,
organised way using my own
and others’ criteria (MNU 1-20a
and b)

* Demonstrates an understanding
of the meaning of individual
instructions when using a
visual programming language
(including sequences, fixed
repetition and selection)

* Explains and predicts
what a program in a visual
programming language will
do when it runs for example,
what audio, visual or movement
effect will result

* Demonstrates an understanding
that computers take information
as input, process and store
that information, and output the
results.

* Simplifies problems by breaking
them down into smaller more
manageable parts

* Constructs a sequence of
instructions to solve a task,
explaining the expected output
from each step and how each
contributes towards solving the
task

* Creates programs to carry out
activities (using selection and
fixed repetition) in a visual
programming language

* |dentifies when a program does
not do what was intended and
can correct errors/bugs

* Evaluates solutions/programs
and suggests improvements

39

40

Organiser 1 First Level

NRich: Two Dice
(http://bit.ly/CSScot60)

See also NRich: Button Up
(http://obit.ly/CSScot61) and
NRich: Beads and Bags
(http://bit.ly/CSScot62)

Process
The children systematically enumerate the combinations
which result from throwing two dice.

Learners can understand and correctly carry out a role
assigned to them in a process.

This was designed as a maths activity, but the main
computational thinking element is systematically trying out
and recording the combinations on the dice. This prompt is
helpful: How will you know when you've found all the totals?

Chicken Fox and Grain puzzle
(http://bit.ly/CSScot64)

Information: Boolean logic and Conditional
statements

This is a web-based animated puzzle of a classic logic
puzzle. There is a person with a chicken, a fox and some
grain trying to get them all across the river in a boat that
can'’t carry everything

The learner is given conditional statements about what will
happen depending on different combinations of two items
being left alone, for example IF chicken and fox are alone

THEN the fox will eat the chicken.

Barefoot Computing - Patterns Unplugged
(http://bit.ly/CSScot50)

Information: Identifying patterns

This is an unplugged activity in which pupils work in pairs
to spot patterns in sets of pictures of objects and think of
general statements to describe these things e.g. elephants,
cats,cars.

By identifying patterns we can make predictions, create
rules and solve more general problems. The emphasis of
this activity is on pupils thinking what is the same, what is
different and are there general statements they can make
about things.

Understanding the world through computational thinking e

Hello Ruby - Ruby’s Dress Code
(http://bit.ly/CSScot63)

Information: boolean logic and Selection

This activity is from the Hello Ruby book (p97) by Linda
Liukas.

Ruby's Dress Code

Ruskry it propared for all kindd of dressing litustioni. Can you Faip her lollow
b Fubi 5 1ha yallow Block 15 Ehoods thi fight Shothi 18 pot indide 1he
pink Black? Either drine new clothes o point 81 the righl optiam. (Thare

i iy)

Exaemgly: What sbouid Buby Wit whonad Butry waar Wi well Fubry need for
war o a rairy iy e by u day of sdveriuret
- - T o -
s sisa -
g |
Wbt wherkd By pac for Wit whond Bubry waar Whal whoukd Buby me
& iy i Ihee Brach? 3 50 bor akabing| S
[B ey man " e .
wine . e

Wt |y whon i U R
Ehareg ok mFobn i by P,

e s,
e T s, iy
L e

This is an unplugged activity where learners help Ruby get
dressed for different conditions (weather and days of the
week). Ruby has a special dress code for each day. IF it’s
raining THEN wear a rain jacket ELSE (‘otherwise’) wear a
dress.

Conditional statements help computers make decisions
and select a set of instructions. This activity uses IF-THEN-
ELSE statements to make decisions about what to wear
depending on different situations.

Alternatives or extensions to this activity:

* Create rules about what food Ruby will eat each day, for
example on “Mondays Ruby only eats triangular food”,
and ask the learners to create a menu for the week

* Create rules about which toys Ruby will play with on
each day, eg “On Tuesdays Ruby only plays with bumpy
toys” and ask the learners to suggest toys for her to
play with depending on the day of the week.

More opportunities in the classroom for this concept would
be asking pupils to line up if they have red hair OR brown
eyes, for example.

Barefoot Computing - Decomposition
Unplugged
(http://bit.ly/CSScot65)

Process: Decomposition and repetition

This is an unplugged activity in which pupils create
hand clapping, hand tutting or hand jive sequences of
movements. Pupils break the sequence of actions down
into parts and in so doing are decomposing.

Pupils link this idea of breaking down a sequence of
actions to breaking problems down when creating
computer programs such as animations or games.

This activity asks the teacher to compose a dance sequence
for the learners to then decompose. It might be easier to
use an existing dance instead (eg Macarena, Locomoation,
or Bob the Builder’s Big Fish Little Fish etc depending on the
age of learners). Draw attention to dance moves which are
repeated in the same sequence

The activity also asks learmners to draw the ‘commands’ but
writing a description might be easier for some learners.
Discuss with learners the difficulties of coming up with a
shared language to communicate the meaning of their
‘commands’. Teachers could then ask learners to compose
their own sequence using hand tuts.

Barefoot Computing - Crazy Character
Algorithms
(http://bit.ly/CSScot66)

Process: Algorithms

By teaching this short unplugged activity your pupils

will create a set of instructions on how to draw a crazy
character and so start to understand what algorithms are.

An algorithm is a precisely defined sequence of instruction
or a set of rules for performing a specific task.

It would be good to follow up this activity by a discussion
on why size, scale, angles and precise language are
important for giving instructions.

This activity could be followed by the CS Unplugged
Programming Languages’ Marching Orders activity.

Barefoot Computing - 2D Shape Drawing
Debugging
(http://bit.ly/CSScot67)

Process: Algorithms
In this activity pupils will follow an algorithm to draw
pictures constructed from 2D shapes.

The algorithms learners follow will include errors and they
will use logical reasoning to detect and correct these.

CS Unplugged - Create-A-Face
(http://bit.ly/CSScot68)

Unplugged activity

Explore algorithms by making an robot face out of card,
tubes and students. Program it to react to different kinds
of sounds (nasty, nice or sudden) and show different
emotions (sad, happy, surprised).

Then think up some other facial expressions and program
rules to make the face respond to sounds with the new
expressions. This links to the Emotional Machine activity in
Organiser 2.

Barefoot Computing - Patterns unplugged:
Recipes
(http://bit.ly/CSScot69)

Process: Identifying Patterns

In this unplugged activity pupils spot patterns in pairs of
similar recipes to identify common steps that they can
reuse in new recipes that they create.

Example sets of simple recipes are provided on how to
make sandwiches, pizza and milkshakes.

The emphasis of this activity is on pupils thinking what is
the same, what is different and are there general common
elements that they can reuse.

This activity would suit learners working at either Level 1
or2.

41

42

Computational Fairy Tales book: The
Marvelous IF-ELSE Life of the King’s Turtle
(http://bit.ly/CSScot70)

Process: Conditions
Story

You could ask the children to write IF-THEN-ELSE rules to
describe the behaviour of their pets at home.

Computational Fairy Tales book: Learning
IF-ELSE the Hard Way
(http://bit.ly/CSScot71)

Process: Conditions
Story

You could ask the children to write IF-THEN-ELSE rules
to describe the rules in their home at dinner time or rules
about classroom behaviour. Encourage them to chain on
additional “IFs” to capture more complex rules.

Computational Fairy Tales book: While
Loops and Dizziness
(http://bit.ly/CSScot72)

Process: Loops
Story

Introduction to a simple while loop. Suitable quick example
for younger learners.

Computational Fairy Tales book:Loops and
Making Horseshoes
(http://bit.ly/CSScot73)

Process: Loops
Story

This story draws attention to the difference between “for”
loops and “while” loops. You could ask the children to
make a Scratch program in which a blacksmith character
hits metal with a hammer 10 times (Organiser 3).

NRich
(http://bit.ly/CSScot74a)
Queueing
(http://bit.ly/CSScot74b)

Information - queue
This NRich activity extends the concept of a sorted
collection of objects by considering a queue.

This activity draws attention to the rules of queues such
as which item in the queue is processed first. Queues
are frequently used to decide the order in which data
processed in later stages of computational thinking, and
are familiar from everyday life.

Computational Fairy Tales book: Stacks,
Queues, Priority Queues, and the Prince’s
Complaint Line

(http://bit.ly/CSScot75)

Process: queue
Story

This story follows up on the queues concept from the
above NRich activity by comparing what happens when
you use different strategies for dealing with queues or
stacks of people who all want something. You could try
using these strategies when children want attention in the
class!

Organiser 2 First Level

Understanding and analysing computing technology

Lift-the-flap Computers and Coding
(http://bit.ly/CSScot76) “What’s Inside” page Story

Computer Systems
Book

Learners understand the main features of a computer,
including input, processing and output, and can identify
these in a range of digital technologies.

This goes into a surprising amount of detail - suitable for
the upper end of Level 1 and into Level 2.

BBC Bitesize - main parts of a computer
(http://bit.ly/CSScot77)

Computer Systems
An interactive presentation labelling the parts of a
computer plus a game.

Learners understand the main features of a computer,
including input, processing and output, and can identify
these in a range of digital technologies.

You could also have a display with old computer parts and
encourage the children to handle them.

Barefoot Computing - ScratchJr Tinkering
(http://bit.ly/CSScot78)

Process: Programming
Pupils will gain familiarity with the Scratchdr environment
and commands

This iPad/Android tablet programming activity involves
pupils tinkering with Scratchdr to find out what it does and
how to create programs in it.

Think of challenges for learners, such as “Can you make
the cat spin around / make a noise / do something
unexpected”.

Ask learners to share their work with others and talk about
the commands they used. This would help to focus the
conversation on the code constructs rather than the effects
of the code.

Barefoot Computing - Kodu Tinkering
(http://bit.ly/CSScot79)

Process: Programming

This computer-based programming activity involves your
pupils tinkering with Kodu to find out what it does and how
to create programs in it.

Pupils will gain familiarity with the Kodu environment and
commands.

The Microsoft Kodu site (http://bit.ly/CSScot181) would be
a good follow on from this activity.

CSUnplugged - Binary numbers
(http://bit.ly/CSScot80)

Information: Binary numbers and data representation
Unplugged activity

“The binary number system plays a central role in

how information of all kinds is stored on computers.
Understanding binary can lift a lot of the mystery from
computers, because at a fundamental level they're really
just machines for flipping binary digits on and off.”

This unplugged activity looks at how numbers are
represented in a computer “There are several activities on
binary numbers in this document, all simple enough that
they can be used to teach the binary system to anyone
who can count!”

NRich: Carroll diagrams
(http://bit.ly/CSScot81)

Information
Reading diagrams

Learners can understand diagrams which illustrate key
aspects of information.

This is very much linked to maths learning and the logical
thinking exercises from Organiser 1.

43

44

Tour Guide
(http://bit.ly/CSScot82)

Algorithms
Introduction to writing algorithms

Creating a simple algorithm to help tourists get from their
hotel to all the city sights and back to their hotel.

This activity explores the benefits of creating algorithms
and thinks about the benefits of efficiency (with shortest
algorithm and shortest path).

Emotional Machine
(http://bit.ly/CSScot83)

Algorithms
Unplugged activity to program a cardboard robot.

This is a very simple way to introduce the idea of programs
and sequences of instructions. The class program a card
robot face to show different emotions one after another.

This activity follows on from the Create A Face (in
Organiser 1, first level)

Organiser 3 First Level
Designing, bullding and testing computing solutions

Barefoot Computing - ScratchdJr Tinkering Barefoot Computing - ScratchJdr Jokes
(http://bit.ly/CSScot78) (http://bit.ly/CSScot84)
Process: Programming Process: Programming

This iPad/Android tablet programming activity involves your In this iPad/Android tablet programming activity pupils, in
pupils tinkering with Scratchdr to find out what it does and pairs, create a simple animation program of a knock knock
how to create programs in it. joke. They use a storyboard to create their design, write the

Pupils will gain familiarity with the ScratchJr environment code in Scratehlr, debug and evaluate.

and commands. Pupils will have to control the timing and order of the two
sprites saying the knock, knock joke lines. In this ScratchdJr
activity the ‘wait’ command is used to sequence the
events.

Think of challenges for learners, such as “Can you make
the cat spin around / make a noise / do something
unexpected”.

Ask learners to share their work with others and talk about
the commands they used. This would help to focus the
conversation on the code constructs rather than the effects
of the code.

45

46

Activities for teaching Second Level

Organisers

Second Level

Understanding the world through

computational thinking

| understand the operation of
a process and its outcome. |
can structure related items of
information

TCH 2-13a

Understanding and analysing
computing technology

| can explain core programming
language concepts in appropriate
technical language

TCH 2-14a
| understand how information is
stored and how key components of
computing technology connect and
interact through networks

TCH 2-14b

Designing, building and
testing computing solutions

| can create, develop and
evaluate computing solutions in
response to a design challenge

TCH 2-15a

* Compares activities consisting
of a single sequence of steps
with those consisting of multiple
parallel steps, for example,
making tomato sauce and
cooking pasta to be served at
the same time

* Identifies algorithms /
instructions that include
repeated groups of instructions
a fixed number of times and/or
loops until a condition is met

e |dentifies when a process is not
predictable because it has a
random element, for example, a
board game which uses dice

e Structures related items of
information, for example, a family
tree (MNU 2-20b)

e Uses a recognised set of
instructions / an algorithm to sort
real worlds objects, for example,
books in a library or trading
cards

e Explains the meaning of
individual instructions
(including variables and
conditional repetition) in a visual
programming language

* Predicts what a complete
program in a visual programming
language will do when it runs,
including how the properties of
objects for example, position,
direction and appearance,
change as the program runs
through each instruction

* Explains and predicts how
parallel activities interact

* Demonstrates an understanding
that all computer data is
represented in binary, for
example, numbers, text, black
and white graphics.

* Describes the purpose of the
processor, memory and storage
and the relationship between them

* Demonstrates an understanding
of how networks are connected
and used to communicate and
share information, for example,
the internet

* Creates programs in a visual
programming language
including variables and
conditional repetition

* l|dentifies patterns in problem
solving and reuses aspects
of previous solutions
appropriately, for example,
reuse code for a timer, score
counter or controlling arrow
keys

* l|dentifies any mismatches
between the task description
and the programmed
solution, and indicates how
to fix them

Organiser 1 Second Level

Understanding the world through computional thinking

Barefoot Computing- Logical number
sequences
(http://bit.ly/CSScot85)

Process: Algorithms. Logic, Patterns
In this activity pupils explain the rule for a number
sequence and predict which number(s) comes next.

Learners extend their knowledge of simple rule based
algorithms. They also use logical reasoning as they work
out and explain their algorithms.

Barefoot Computing - Logical Reasoning unplugged
(http://bit.ly/CSScot86)

Barefoot Computing - Logical Reasoning
unplugged
(http://bit.ly/CSScot86)

Process: Logical Reasoning

This is an unplugged activity in which pupils work in pairs
to complete sudoku puzzles. The emphasis of this activity
is on pupils using logical reasoning to solve the puzzles
— pupils have to explain to their partner how they have
worked out each number they add to the sudoku grid.

In this activity pupils use logical reasoning as they analyse

the sudoku squares to work out which number to add next.
Pupils are encouraged to regularly explain their thinking, to
help develop both their logical reasoning and their ability to
articulate such reasoning.

[t may help learners to discuss the logical rules (or
‘heuristics’) for solving sudoku puzzles beforehand.
Learners could also discuss strategies where the number
in a square is not uniquely determined.

Learners that need an additional challenge could work on
9x9 grid sudoku puzzles.

This activity could be followed up by using Logic Grid
puzzles(http://bit.ly/CSScot182) in class.

Barefoot Computing - Patterns unplugged:
Recipes
(http://bit.ly/CSScot69)

Process: Identifying Patterns

In this unplugged activity pupils spot patterns in pairs of
similar recipes to identify common steps that they can
reuse in new recipes that they create.

Example sets of simple recipes are provided on how to
make sandwiches, pizza and milkshakes.

The emphasis of this activity is on pupils thinking what is
the same, what is different and are there general common
elements that they can reuse.

This activity would suit learners working at either Level 1 or 2.

Barefoot Computing - Variables unplugged
(http://bit.ly/CSScot87)

Information: Variables
This is an unplugged activity in which pupils learn about
variables by keeping score for a game.

Pupils learn why variables are needed, how they are
created, how they store data, and how this data may be
used by a computer program as it runs.

CS Unplugged - Programming Languages
(http://bit.ly/CSScot88)

Programming Languages - Drawing
Unplugged drawing activity. In pairs students give
instructions to draw a shape to their partner.

Computer programs are sequences of instructions that
the computer must follow. This Marching Orders activity
demonstrates some of the issues that arise when we try to
give precise instructions to achieve a desired outcome.

Variations to this activity are given but students can also
work on describing more challenging images such as
doodle monsters (http://bit.ly/CSScot89).

47

48

Code-IT Jam Sandwich
(http://bit.ly/CSScot90)

Programming Languages - Jam Sandwich

Unplugged activity. Students give instructions (to a teacher-
bot!) on how to make a jam sandwich using only a fixed set
of allowed words.

This activity demonstrates some of the issues that arise
when we try to give precise instructions to achieve a
desired outcome.

This activity is best done by the whole class together
giving instructions to the teacher (and ideally it all goes
disastrously wrong due to inaccuracy!). Students can then
perfect their algorithm and try to optimise it.

Computational Fairy Tales: Goldilocks and
the Two Boolean Bears
(http://bit.ly/CSScot91)

Information: Boolean logic
Story

A twist on the class Goldilocks story in which two bears
have exactly opposite preferences. The pupils could draw
a truth table for the bears’ preferences.

Computational Fairy Tales: The Town of
Bool (http://bit.ly/CSScot92),

The Gates of XOR

(http://bit.ly/CSScot93),

The Valley of NAND and NOR
(http://bit.ly/CSScot94)

Information: Boolean logic
Story

The Town of Bool illustrates how real life doesn’t tend to
work with binary logic - it is really tedious. The Gates of
XOR and the Valley of NAND and NOR illustrate more
advanced logical operators which might appeal to learners
who have found the logic material easy to grasp so far. Or
to kids who love to trip other people up with pedantic logic.

Computational Fairy Tales:
The Tortoise, the Hare, and 50000 Ants
(http://bit.ly/CSScot95)

Process: Algorithms/ parallel processes
Story

It would be a good idea to tell the story of the Tortoise
and the Hare first. This story illustrates why doing tasks in
parallel is a good idea - it saves time and in some cases
makes it possible to solve a problem in the first place.
None of the ants would be able to run 5000m by himself,
but they can do the same distance as a team. This story
develops an understanding of how solving the same
problem using different approaches will result in more or
less efficient solutions.

Computational Fairy Tales book: Bullies,
Bubble Sort, and Soccer Tickets
(http://bit.ly/CSScot96)

Process: Sorting (bubble sort)
Story

If you’re not using the Fairy Tales book as a running
example, you could adapt this story slightly into an
unplugged exercise.

Computational Fairy Tales book: Bog
dragons don’t support multi-threading
(http://bit.ly/CSScot97)

Process: Multi-tasking/ parallel processing
Story

A computer with a single processor can only do one thing
at a time. This means it needs to rapidly switch between
tasks to enable the user to read email, browse the web
and have a document open all at the same time. A system
which can handle this supports multi-threading. A system
which can'’t is pretty useless, like the bog dragon in this
story. There are various traditional folk tales in which the
monster can be easily distracted to let the hero get away.

CS Unplugged - Searching Algorithms
(http://bit.ly/CSScot98)

Process: Searching Algorithms with Battleships
Unplugged activity

“Searching for a keyword or value is the basis of many
computing applications, whether on an internet search
engine or looking up a bank account balance.”

“This activity explores the main algorithms that are used
as the basis for searching on computers, using different
variations on the game of battleships.”

CS Unplugged - Sorting Algorithms
(http://bit.ly/CSScot99)

Process: Sorting Algorithms
Unplugged activity

‘Almost any list that comes out of a computer is sorted into
some sort of order, and there are many more sorted lists
inside computers that the user doesn't see. Many clever
algorithms have been devised for putting values into order
efficiently.”

“In this activity students compare different algorithms to
sort weights in order.”

CS Unplugged - Sorting Networks
(http://bit.ly/CSScot100)

Process: Parallel Sorting
Unplugged activity

“To make computers go faster, it can be a lot more effective to
have several slower computers working on a problem than a
single fast one. This raises questions about how much of the
computation can be done at the same time.”

“Here we use a fun team activity to demonstrate an
approach to parallel sorting. It can be done on paper, but
we like to get students to do it on a large scale, running
from node to node in the network.”

Logic grid puzzles
(http://bit.ly/CSScot101)

Information: boolean logic
Puzzles

Logic grid puzzles are a nice way of exploring use of
logic and deduction. Clues are given that give partial
information and the learner needs to work out the rest of
the information using logical thinking.

CS Unplugged - Information Theory
(http://bit.ly/CSScot102)

Information: Information Theory
Unplugged activity

“Computers are all about storing and moving information,
but what actually is information? How do we measure the
amount of information in a message?”

“This activity uses some intriguing variations on the game of
20 questions to demonstrate how we can quantify information
content, which in turn shows us how to store and share it
efficiently.”

CS Unplugged - Finite State Automata
(http://bit.ly/CSScot103)

Process: Finite State Automata
Unplugged activity

“Finite-state automata are used in computer science to
help a computer process a sequence of characters or
events. Finite state automata (FSAs) sound complicated,
but the basic idea is as simple as drawing a map.”

“This activity is based around a fictitious pirate story which
leads to the unlikely topic of reasoning about patterns in
sequences of characters”

49

50

NRich: A bit of a dicey problem
(http://bit.ly/CSScot104)

NRich: Rock, paper, scissors
(http://obit.ly/CSScot105)

Process: predictable behaviour
Unplugged activities in which learners reason about
chance while playing common games.

Randomness in a process makes it unpredictable in the
sense that a random process may produce varied output
when given the same input. This activity develops the
learner’s’ understanding of the range of outputs to expect
from the simple random process of throwing a die. This is
a useful prompt “Do you have more chance of getting one
answer than any other?”

Design a board game
(http://bit.ly/CSScot106)

Process: predictable behaviour and when processes
end

Groups of learners work together to design a board game.
The emphasis should be on the rules of the game, whether
it involves chance, and whether and how it ends.

Sessions 1-2 in this plan are most relevant for
computational thinking.

Describe the rules of your game (this is good practice for
clearly stating an algorithm)

What causes the game to finish?

Can you be sure the game will finish?

How can you change your game to make sure it finishes?
(Hint: adding a timer is an easy way!)

This activity would also be suitable for Organiser 3.

Organiser 2 Second Level

Understanding and analysing computing technology

Lift-the-flap Computers and Coding
“How Computers Think” page and “Computer
Language” page (http://bit.ly/CSScot107)

Digital information representations
Book

Learners have the knowledge and understanding of how
more complex digital technologies work.

This resource page covers how information is represented
and stored by the computer

Lift-the-flap Computers and Coding
“Using the internet” (http://bit.ly/CSScot107)

Networks
Book

Learners have knowledge and understanding of computer
networks.

This page explains what happens when you open a
webpage and the basics of how the internet works

Barefoot Computing - Scratch Tinkering
(http://bit.ly/CSScot108)

Process: Programming

This computer-based programming activity involves your
pupils tinkering with Scratch to find out what it does and
how to create programs in it.

Pupils will gain familiarity with the Scratch environment and
commands.

Additional questions / prompts for this activity are “What
do these commands do?” and “What would happen if we
changed the order of the blocks/commands?”

Learners can showing their creations to other learners.
Get everyone to display their programs full screen and
ask learners to walk around and predict which commands
were used to give the effects they see in the program.
Alternatively they could look at the code without pressing
the green flag and predict what will happen when the
program runs.

Stretch and Challenge tasks, or next steps for the
whole class, can be sourced from the excellent Creative

Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Shapes and Flowers
Repetition
(http://bit.ly/CSScot109)

Process: Programming - Repetition

In this computer-based programming activity, pupils design
algorithms to draw patterns made of simple shapes before
writing a Scratch program to draw their shapes.

Pupils will learn about using repeat commands in Scratch.

Stretch and Challenge tasks, or follow on activities for the
whole class, can be sourced from the excellent Creative
Computing guide or the Scratch cards.

Barefoot Computing - Bug in the Water
Cycle
(http://bit.ly/CSScot110)

Process: Programming - debugging

In this computer-based programming activity pupils are
challenged to detect and correct the error in a number of
water cycle Scratch programs (debugging).

Pupils use logical reasoning to correct errors (debug) in
Scratch programs, comparing what the program should do
with what it does do, and systematically homing in on the
error (bug) by ‘thinking through’ the code in the program.

Barefoot Computing - Introduction to HTML
(http://bit.ly/CSScot111)

Process: Programming - HTML

This is computer-based activity introduces pupils to HTML.
Pupils learn that web pages are written using HTML and
become familiar with basic HTML tags by remixing web
pages using Mozilla X-Ray Goggles.

Web pages are written using a special language called
HTML. HTML tells the web browser how to structure and
display the page. HTML stands for HyperText Mark-up
language.

51

52

Barefoot Computing - Modelling the
Internet
(http://bit.ly/CSScot112)

Networking

In this unplugged activity pupils are assigned roles as
different digital devices in a human model of the internet
and learn how the internet provides access to the WWW
(an internet service) as they pass data between them.

The internet is a vast network of computers and other
devices connected across the world. Pupils explore the
difference between the internet and the world wide web
(WWW),

Barefoot Computing - Network Hunt
(http://bit.ly/CSScot113)

Networking

In this activity pupils go on a hunt around their school to
discover, and map the location of, devices connected to
their school’s network. Pupils then learn about the role of
each device by either conducting web-based research or
using the matching activity included.

A computer network is a collection of computer systems
(http://bit.ly/CSScot148) and other devices connected
together to ‘talk’ to each other by exchanging data.

Pupils will discover that a network is typically made up

of a server (a computer which provides services to a
network) and clients (computers which use the services on
the network). Pupils also learn about other devices on a
local area network, such as a switch and wifi points which
enable computers to communicate by exchanging data.

Barefoot Computing - Selecting Search
(http://bit.ly/CSScot114)

Networking - Search engines

In this computer-based activity, pupils learn about the
basics of how search engines use web crawlers to index
the world wide web (WWW) and how this is used to select
search results. Pupils act like web crawlers themselves,
indexing a very small portion of the WWW, and they then

use this index to respond to search queries.

Search engines are programs designed to help users find
information on the world wide web. They do this by building
up an index of the web using web crawlers. Web crawlers
are programs which move across the web by following the
links between pages. They take copies of the web pages
they visit to build up a search engine’s index.

Barefoot Computing - Ranking Search
(http://bit.ly/CSScot115)

Networking - Search engines

This is an unplugged activity in which pupils learn about
some of the main factors which influence how a search
engine ranks a web page. Pupils create paper-based ‘web
pages’ in groups on a current topic they are studying.
They then discover how their web pages would rank when
searching for keywords relating to their content.

To rank the search results the search engine program
analyses the content of each web page to determine how
relevant they are to your search.

Barefoot Computing - Investigating Inputs
(http://bit.ly/CSScot116)

Process: Programming and Input devices

This computer-based programming activity is an
investigation of different input devices, where pupils are
challenged to create a Scratch program that uses the input
from a device in a short piece of code.

An input device is a digital device that takes data from the
outside world and converts it into a format that a computer
system can use, such as a keyboard, microphone or
mouse.

If your school doesn’t have technology such as picoboards
or WeDo kits, don'’t forget that a mouse is an input device
too! The Scratch commands for following the mouse are
quite fun too!

Barefoot Computing - Investigating Outputs
(http://bit.ly/CSScot117)

Process: Programming output devices

In this computer-based programming activity pupils learn
about output devices and create a program to control a
LEGO Education WeDo motor using Scratch.

An output device is a digital device that takes data from
a computer system and converts it for use in the outside
world, such as sound (with speakers or headphones),
vision (using a computer monitor) or motion (using a
motor)

This activity is not possible without access to a WeDo kit. If
you want to explore output devices and motors then Ohbot
is an alternative to WeDo.

Speakers are also output devices and it is quite fun to
explore recording and using sound effects in Scratch
(using a microphone as an input device to record speech
Or NOIses).

Barefoot Computing - Classroom Sound
Monitor
(http://bit.ly/CSScot118)

Programming - control using sensors
In this computer-based programming activity pupils create
a sound monitor for their classroom.

The sound monitors they create are examples of control
(http://bit.ly/CSScot140) programs — they take information
from an input sensor (http://bit.ly/CSScot141) (a microphone),
and use this information to alter the output (http://bit.ly/
CSScot142) of the program (displaying a warning message if
pupils are too noisy).

Computational Fairy Tales: Using Binary to
Warn of Snow Beasts
(http://bit.ly/CSScot119)

Information: Binary representations

Story

A story which illustrates how information can be encoded in
a binary representation to be more space efficient.

CSUnplugged - Binary numbers
(http://bit.ly/CSScot80)

Information: Binary numbers and data representation
This unplugged activity looks at how numbers are
represented in a computer.

“The binary number system plays a central role in

how information of all kinds is stored on computers.
Understanding binary can lift a lot of the mystery from
computers, because at a fundamental level they’re really
just machines for flipping binary digits on and off.”

“There are several activities on binary numbers in this
document, all simple enough that they can be used to
teach the binary system to anyone who can count!”

Binary Loom Bands
(http://bit.ly/CSScot120) YouTube video by Karen Petrie
with worksheet link in the video description notes.

Information: Binary numbers and text representation
(ASCII)

An unplugged activity to make loom band bracelets with
letters in binary.

When we press keys on a keyboard or send a text
message, those letters are sent as binary numbers based
on a standard code (For example ‘A’ is 65 in binary, 'z’ is
122).

This activity shows you how to convert your initials into
binary then make a loom band bracelet which incorporates
them.

CS Unplugged - Image Representation
(http://bit.ly/CSScot121)

Information: Image representation
Unplugged activity

“Images are everywhere on computers. Some are obvious,
like photos on web pages and icons on buttons, but others
are more subtle: a font is really a collection of images of
characters, and a fax machines is really a computer that is
good at scanning and printing.”

53

54

“This activity explores how images are displayed, based
on the pixel as a building block. In particular, the great
quantity of data in an image means that we need to use
compression to be able to store and transmit it efficiently.
The compression method used in this activity is based on
the one used in fax machines, for black and white images.”

CS Unplugged - Text compression
(http://bit.ly/CSScot122)

Information: Text compression
Unplugged activity

“Since computers only have a limited amount of space
to hold information, they need to represent information
as efficiently as possible. This is called compression. By
coding data before it is stored, and decoding it when it is
retrieved, the computer can store more data, or send it
faster through the Internet.”

“Children’s rhymes and stories are good examples for text
compression, because they often involve repeated words
and sequences.”

CS Unplugged - Error Detection
(http://bit.ly/CSScot123)

Information: Error detection
Unplugged activity

“When data is stored on a disk or transmitted from one
computer to another, we usually assume that it doesn’t get
changed in the process. But sometimes things go wrong
and the data is changed accidentally.”

“This activity uses a magic trick to show how to detect
when data has been corrupted, and to correct it.”

CS Unplugged - Routing and Deadlock
(http://bit.ly/CSScot124)

Network Routing and Deadlock
Unplugged activity

“Computer networks are based on passing messages from
computer to computer. This sounds simple in principle,

but in practice all sorts of contention and bottlenecks can
occur.”

“Computer networks are based on passing messages from
computer to computer. This sounds simple in principle,

but in practice all sorts of contention and bottlenecks can
oceur.”

“This activity gives some first hand experience of such
issues, with a game for a group of students.”

CS Unplugged - Minimal Spanning Trees
(http://bit.ly/CSScot125)

Minimal Spanning Trees
Unplugged activity

“Our society is linked by many networks: telephone
networks, utility supply networks, computer networks, and
road networks. For a particular network there is usually
some choice about where the roads, cables, or radio links
can be placed. We need to find ways of efficiently linking
objects in a network.”

“This puzzle shows students the decisions involved in
linking a network between houses in a muddy city.” It can
lead on to a discussion of finding the shortest path for
networks, pipes and journeys, and why this is important.”

CS Unplugged - Network Communication
Protocols (nhitp://bit.ly/CSScot126)

Network Communication Protocols
Unplugged activity

“Computers talk to each other over the internet via
messages. However, the internet is not reliable and
sometimes these messages get lost. There are certain bits
of information we can add to messages to make sure they
are sent. This information makes up a protocol.”

“In this Tablets of Stone activity students consider how
different methods of communication operate successfully.
By looking at rules and procedures in place, students are
introduced to communication protocols.”

Organiser 3 Second Level

Designing, bullding and testing computing solutions

Harvard University - Creative Computing
(http://obit.ly/CSScot127)

Process: Programming

A huge variety of computer-based Scratch programming
activities. The authors say “No prior experience with
computer programming is required, only a sense of
adventure!”

Pupils will gain familiarity with the Scratch environment and
commands while learning Computing Science concepts
and being creative at the same time.

This is an excellent guide for teachers wanting to teach
Computing concepts using Scratch to their learners. There
are teacher activity sheets and handouts for learners.

There are activities for those who are completely new to
Scratch and also some interesting and fun challenges for
those who are very experiences with the programming
environment.

Harvard University - Creative Computing:
Unit 4 (http://bit.ly/CSScot127)

Information Handling
Unit 4 focuses on making games and introduces data
handling including lists

Through writing programs which process information,
learners begin to understand how program output varies
according to program input.

Programs which handle data are more challenging, but
also closer to solving real world programming problems.
This unit would work with more advanced/confident
learners towards the end of the level.

Royal Society of Edinburgh - Introduction
to Computing Science: Starting From
Scratch (http://oit.ly/CSScot128)

Process: Programming
A set of introductory activities for learning Computing
Science through Scratch.

Pupils will gain familiarity with the Scratch environment and
commands as well as learning about core CS concepts.

This exempilification resource was originally written for CfE
Level 3 but would be very suitable for Level 2 Organiser 3
within this Progression Framework.

Barefoot Computing - Scratch Tinkering
(http://bit.ly/CSScot108)

Process: Programming

This computer-based programming activity involves your
pupils tinkering with Scratch to find out what it does and
how to create programs in it.

Pupils will gain familiarity with the Scratch environment and
commands.

Additional questions / prompts for this activity are “What
do these commands do?” and “What would happen if we
changed the order of the blocks/commands?”

Learners can showing their creations to other learners.
Get everyone to display their programs full screen and
ask learners to walk around and predict which commands
were used to give the effects they see in the program.
Alternatively they could look at the code without pressing
the green flag and predict what will happen when the
program runs.

Stretch and Challenge tasks, or next steps for the

whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Kodu Tinkering
(http://bit.ly/CSScot130)

Process: Programming

This computer-based programming activity involves your
pupils tinkering with Kodu to find out what it does and how
to create programs in it.

Pupils will gain familiarity with the Kodu environment and
commands.

The Microsoft Kodu site (http://bit.ly/CSScot131) would be
a good follow on from this activity.

55

56

Barefoot Computing - Shapes and Flowers
Repetition
(http://bit.ly/CSScot109)

Process: Programming - Repetition

In this computer-based programming activity, pupils design
algorithms to draw patterns made of simple shapes before
writing a Scratch program to draw their shapes.

Pupils will learn about using repeat commands in Scratch
Stretch and Challenge tasks, or follow on activities for the
whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Fossil Formation
animation
(http://bit.ly/CSScot132)

Process: Programming - sequences and
implementing algorithms

In this computer-based programming activity pupils
program an animation in Scratch illustrating the steps in
fossil formation.

Pupils will learn that programming is the process of
implementing algorithms as code, and about sequencing
commands in Scratch.

Stretch and Challenge tasks, or follow on activities for the
whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Viking Raid animation
(http://bit.ly/CSScot133)

Process: Programming - sequences and
implementing algorithms

In this computer-based programming activity pupils
program an animation in Scratch of a Viking raid.

Pupils will learn that programsming is the process of
implementing algorithms as code, and about sequencing
commands in Scratch.

Stretch and Challenge tasks, or follow on activities for the

whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Scratch Maths Quiz
- selection (http://bit.ly/CSScot134a)
Barefoot Computing - Scratch Maths Quiz
- variables (http://bit.ly/CSScot134b)

Process: Programming - selection and variables
In these computer-based programming activity pupils
program a Maths quiz in Scratch.

Selection (also known as conditions) allows the flow of the
program to be altered depending on the player’'s answers
to questions.

Pupils then learn to use variables in Scratch to make a
scoring system for their maths quiz.

Stretch and Challenge tasks, or follow on activities for the
whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Animated Poem
(http://bit.ly/CSScot136)

Process: Programming and Problem Solving -
Decomposition

In this computer-based programming activity pupils create
an animation of a poem using Scratch.

Pupils will learn about decomposition. Decomposition is
breaking something down into smaller parts to help solve a
problem or undertake a task.

Stretch and Challenge tasks, or follow on activities for the
whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Solar System
Simulation (http://bit.ly/CSScot137)

Process: Programming and Problem Solving -
Abstraction

In this computer-based programming activity pupils create
a simulation (http://bit.ly/CSScot139) of the Earth orbiting
the Sun using Scratch. Pupils decide what the purpose of
the simulation is and who is the intended audience.

Pupils decide what the most important aspects of the
simulation are, and in so doing they are abstracting (http://
bit.ly/CSScot138).

Stretch and Challenge tasks, or follow on activities for the
whole class, can be sourced from the excellent Creative
Computing guide (http://bit.ly/CSScot127) or the Scratch
cards (http://bit.ly/CSScot129).

Barefoot Computing - Investigating Inputs
(http://bit.ly/CSScot116)

Process: Programming and Input devices

This computer-based programming activity is an
investigation of different input devices, where pupils are
challenged to create a Scratch program that uses the input
from a device in a short piece of code.

An input device is a digital device that takes data from the
outside world and converts it into a format that a computer
system can use, such as a keyboard, microphone or
mouse.

If your school doesn't have technology such as picoboards
or WeDo kits, don't forget that a mouse is an input device
too! The Scratch commands for following the mouse are
quite fun too!

Barefoot Computing - Investigating Outputs
(http://bit.ly/CSScot117)

Process: Programming output devices

In this computer-based programming activity pupils learn
about output devices and create a program to control a
LEGO Education WeDo motor using Scratch.

An output device is a digital device that takes data from
a computer system and converts it for use in the outside
world, such as sound (with speakers or headphones),
vision (using a computer monitor) or motion (using a
motor).

This activity is not possible without access to a WeDo kit. If
you want to explore output devices and motors then Ohbot
is an alternative to WeDo.

Speakers are also output devices and it is quite fun to
explore recording and using sound effects in Scratch
(using a microphone as an input device to record speech
or noises).

Barefoot Computing - Classroom Sound
Monitor (http://bit.ly/CSScot118)

Process: Programming - control using sensors
In this computer-based programming activity pupils create
a sound monitor for their classroom.

The sound monitors they create are examples of control
(http://bit.ly/CSScot140) programs — they take information
from an input sensor (http://bit.ly/CSScot141) (a
microphone), and use this information to alter the output
(http://bit.ly/CSScot142) of the program (displaying a
warning message if pupils are too noisy).

Barefoot Computing - Make a Game project
(http://bit.ly/CSScot143)

Process: Programming
In this computer-based programming activity pupils create
a simple game in Scratch.

Pupils design their game and create artwork for their
background and main character. They then write and
debug their code, and finally they present and evaluate
their games.

Preparation activities can be sourced from the excellent
Creative Computing guide (http://bit.ly/CSScot127) or the
Scratch cards (http://bit.ly/CSScot129). Both of these sites
have useful activities for learning core skills for Scratch
game design.

57

58

It will help learners to develop techniques that can be
reused such as control methods (using keys or mouse to
move a sprite), game mechanisms (scores, lives, timers
etc) and sensing techniques (using ‘touching sprite’ or
‘touching colour’ blocks to sense when a sprite is over
another sprite or a particular part of the game space). For
this activity ask learners to create a very specific game type
rather than allowing a wide choice.

Barefoot Computing - Kodu Game - selection
(http://bit.ly/CSScot144)

Process: Programming - selection
In this computer-based programming activity pupils create
a simple game in Kodu.

Pupils create a design for their game, which includes rule-
based algorithms describing how it will be played and a
sketch of the Kodu world it will be played in. Pupils then
create the Kodu world, implement their algorithms as code
and play and evaluate each other’'s games.

The Microsoft Kodu site (http://bit.ly/CSScot131) is a good
source of support materials and preparation activities
before moving on to this activity.

Abstractionis a key concept in computer science. Abstraction is about improving understanding by separating core concepts
from inessential detail. When solving complex problems, abstraction enables us to focus on the more important aspects, thus helping
to manage complexity. For example, a timetable is an abstraction of what a pupil will do in a typical week. It shows the pupils details

of the subjects they will learn, who will teach them and when and where the lessons happen. Details such as learning objectives for
individual lessons are not included, as this is not important for the intended purpose of the timetable. More information on abstraction
(http://bit.ly/CSScot138)

Algorithm An algorithm is a precisely-defined sequence of instructions which is used to describe a process: a set of rules to
describe how to get something done. Algorithms are usually written for a human, rather than for a computer, to understand. Algorithms
normally have a start point and an end point, usually have some input, and are expected to finish with a correct outcome. As they share
many of these properties with computer programs, they are often easy to translate into a programming language. More information on
algorithms (http://bit.ly/CSScot145)

Binary Most computers use binary numbers to represent information, through using “on” and “off” circuits to represent binary
numbers.. We are more used to counting in the decimal number system, because we have 10 fingers to count on! Computers use
binary to store and represent not just numbers, but also letters, images, videos, blocks in a visual programming language, and even
the instructions that they can execute.

Bugs / Debugging A bug in a computer program happens when the programmer has made a mistake or has missed out a bit of
code, causing the program to do the wrong thing. Debugging is an important skill for programmers who must be able to identify errors, find
them in the program, correct them and then test that the bug is gone. More information on debugging (http://bit.ly/CSScot146)

Computing Ianguage / environment Just like people, computers often understand a variety of different languages
which are suitable for different purposes. Some computing languages are suitable for use by experts, or for certain sorts of scientific
or data management tasks. Expert programmers are more likely to use textual languages which are written using English words and
phrases with clearly specified rules (known as syntax and semantics).

Beginner programmers will likely find a visual programming language easier to learn. In a visual language, the program is shown as a

mixture of graphics and text, and the programmer can drag the graphics around to change the sequence of instructions. Often visual

languages are blocks based, where programing constructs are represented in coloured blocks which look like jigsaw pieces. Scratch

Jris an example of an icon-based blocks language, as it uses blocks, icons and symbols so that programmers do not need to read or
write. More information on computing languages (http://bit.ly/CSScot147)

Computational thinking is a powerful approach to solving problems. It is commonly used in computer science, but it

is applicable to many everyday problems too. It allows us to take a complex problem, understand the problem better by using a
computational framework, and develop possible solutions. We can then present these solutions in a way that a computer, a human, or
both, can understand.

Decomposition is when you solve a big problem by breaking it up into smaller bits, solving those, and sticking the smaller
solutions together into a final answer. More information on decomposition (http://bit.ly/CSScot149)

Deterministic An attribute of a process, which means that its outcome is predictable and repeatable. For example, the outcome
of moving a counter a given number in Snakes and Ladders is deterministic, but the outcome of throwing the dice is not deterministic.
All computing processes are in fact deterministic, unless their behaviour depends on non-deterministic input. Modern computing
devices are so complex that this is not always obvious.

Event handling It is common for a program to have to respond to input from the user, or messages from sensors or other
computers. This is called event handling. For example, in a language like Scratch, there are blocks to help the programmer write code to
respond to events like key presses from the user or the sprite colliding with another sprite.

Hidden mechanism A mechanism normally hidden from the view of a user of a device, for example the engine of a car or the
wash cycle of a washing machine. Users often need to know something about this mechanism in order to use the device effectively;
for example a washing machine does not quite function as a “magic box” where clothes go in dirty and come out clean, although
this is the abstraction the designers aim for. We can use the machine more effectively when we understand more about how it works,
about temperature, spin speeds and timing of washing cycles. Similarly, the more that a user understands the hidden mechanisms in
computing devices such as smartphones and the Internet, the more value they can get from them.

59

60

Information Any kind of fact or knowledge about something tangible, like a physical item, or intangible, like an idea. In
computing information is represented by a sequence of symbols which can be understood by a person or machine that will interpret
the information. In computer memory all information is stored in the simplest form of information possible, binary.

Input / Process / Storage / 0utput This is the sequence of activities computers generally perform. The
computer takes in information as input (perhaps the user types on the keyboard or moves the mouse), processes that information by
following a sequence of instructions from a computer program, stores the results of the program for later (on a hard disk) and then
outputs the results to the user (such as changing the display on the screen or playing a sound through the speaker). More information
on computing systems (http://bit.ly/CSScot148), inputs (http://bit.ly/CSScot141) and outputs (http://bit.ly/CSScot142)

Interface we use “interface” in this document to describe the part of a piece of software which the user sees and interacts with.
In any software package, there is a lot of code which happens behind the scenes which the user has no need to be aware of. The
interface between the program and the user enables the user to enter input (perhaps using a mouse or keyboard) and see the output
(usually on screen). The way in which a computer interacts with people is sometimes known as its Human-Computer Interface.

Logic (AND / OR / NOT) Computers are built to process instructions containing boolean logic. Key words to learn here
are AND, OR and NOT. Of course, we use these words in everyday language, but it is worth checking that your learners understand their
precise meaning. These concepts are often used within selection statements in programs when the computer should take different action
depending on the information it is processing. More information on logic (http://bit.ly/CSScot150). Here are some examples:

* |F the username is correct AND the password is correct THEN display the home page. (both conditions need to be true with AND)

* IF the password is NOT correct THEN display an error message. (NOT is about checking whether the opposite of a statement is true)

* |IF the number of lives gets to zero OR the timer gets to 60 THEN display the message “You lose!”. (For OR, if either or both of the
conditions are true, then the action should be taken.)

Mental models in the context of computing education, we use the term “mental model” to describe a learner’s
understanding of how a computer system works. Novice programmers often have an incomplete and flawed model of how a program
will execute which makes it harder for them to find bugs.

ParaIIeI The term “parallel” is used to describe two or more processes which occur at the same time. For example, in Scratch
you can have more than one script running at a time such as a cat sprite chasing a dog sprite.

Process A dynamic series of connected actions, many of them occurring one after the other in a sequential order, normally with
apparent start and finish states (some processes may never finish however.) The behaviour of a process may depend on its context
perhaps through input or observation of its environment. The behaviour of a process in a game might be affected by sensing the race
car is driving over green grass, or a user clicking the mouse. The process of getting ready for play time might change if we see dark
rain clouds outside.

Repetition Computers excel at doing the same thing over and over again without making a mistake. Most programming
languages make it easy for the programmer to instruct the computer to repeat tasks using loops. Fixed repetition is when the
computer is instructed to carry out a sequence of steps a certain number of times, e.g. “do this ten times: move one step to the left”.
Conditional repetition is when the program keeps repeating a sequence of steps until a condition becomes true e.g. “keep doing
this: if you haven't hit the side of the screen yet, move one step to the left”. More information on repetition (http://bit.ly/CSScot151)

Representation (pictorial, iconic, phySical, etC) Representations matter a lot in computer science,
because sometimes problems are easier to solve if they are represented in a different way. For example, when young children learn about
sequences, it might be easiest for them to understand the concept by interacting a physical robot. As they get better at understanding
symbolic representations (such as pictures, diagrams or text), they can then reason about sequences more fluently because they do not
have to rely on their memory. They can read a representation of a program and predict what it will do, or write their own instructions in pictorial
form. Computers process on 1s and 0s, but this is an awful representation of information for humans because it is very hard to remember
what long sequences of binary mean. This is why, behind the scenes, computers translate programs written in a language we understand into
binary. Visual programming languages have a clearer representation for novices, but for experts they may be too cumbersome.

SearChing Computers spend a lot of time searching for specific items in large collections of information (for example, finding a
customer name in a list of 80,000 customers). Because of this, computer scientists have spent a lot of time working out mathematically
efficient ways to search information quickly. Often this requires the information to be carefully sorted to make searching easily. Simple
search algorithms can also be used in real life problems.

Sequence A series of actions, where the actions occur one after another in the order they are listed in. More information on
sequence (http://bit.ly/CSScot152)

Selection Making a choice about what action to carry out next based on testing if a condition is true or false. We can select
whether to do something or nothing, select between two possible actions or select one of many possible actions Selection statements
are often expressed in the format IF a condition is true THEN do something ELSE do something different. More information on
selection (http://bit.ly/CSScot153)

State A process or a program moves through a series of states as it executes instructions. A state is a useful abstraction to help
you think about the main stages of a program and how the program moves between the states without worrying about the detail. For
example, an order in an online shopping web site could be in the state of: order requested, purchased, delivered, or order complete.
Every process should have one or more start or end states.

Sorting Information isn't very useful if it is stored in a big jumble. Computer scientists like their information to be sorted to make
it easier to find items later or to process it in other ways. Information which is clearly structured is easier to sort. You can sort the same
collection of information in different ways depending on which attribute you use. For example, if you had a collection of information
about pupils in your school, you could sort them according to age or height, or sort them by class and then surname.

Sprlte This is a term from animation, also used in some visual programming languages, to refer to a 2D picture which can move
around the screen. In Scratch, sprites can have blocks attached to them which control their behaviour.

Predictable and non-predictable In this document, we use the term “predictable” to describe programs
where it is possible to look at the input and the program code and work out what the output will be. By “non-predictable” we mean
programs where it is not possible to say in advance what the output will be given the input and the program code because the program
uses randomness. For example, if you have a program which uses the equivalent of a dice roll to choose between six options, you
know in advance the range of possible outputs, but you don’t know exactly which one will happen in any given run of the program.

Prog ramming constructs wost programing languages share a set of common useful features such as selection
(IF... ELSE) and repetition (fixed loops using REPEAT or FOR, conditional loops using FOREVER or WHILE), as well as ways of storing
structured information. These are referred to as programming constructs. The constructs might look different in different languages, but
they tend to work in a similar enough way that a programmer who knows one language can adapt to another one. You might also see
the terms “control structures” or “control flow elements” to refer to programming constructs which specify what the program should do
next in a sequence.

Unplugged Computing You don't need a computer to learn about computing concepts! “Unplugged” computing is
when you use computational thinking away from the computers, for example with physical games or pencil and paper.

Variables A name given to an abstract concept within a computer program to store information temporarily while the program

is running. Variables also exist in mathematics, for example the variable pi is used to refer to the ratio of a circle’s circumference to its
diameter, and variables such as x and y are used in equations to refer to numbers whose value is not yet known. Unlike in algebra,
however, computing variables can change their value over time while a program is running, for example to store the score of a game or
for a countdown timer. More information on variables (http://bit.ly/CSScot154)

61

62

The Scottish Curriculum:
A Pbriet guide for international readers

Children in Scotland start primary school at between age 4"z to 5'2. They attend primary school for seven years (P1 to
P7). Then aged eleven or twelve, they start secondary school for a compulsory four years (S1 to S4) with the following two
years (S5 and S6) being optional.

The Scottish curriculum has two stages: the broad general education (from the early years to the end of S3) and the
senior phase (5S4 to S6).

The broad general education (BGE) has five levels:

* Early level - Early Years and Lower Primary

e First level - Lower Primary

e Second level - Upper Primary

e Third level - Lower Secondary

» Fourth level - Optional learning outcomes to challenge learners before they move on to the senior phase

The curriculum at the broad general education stage comprises of groups of individual learning outcomes, called
Experiences and Outcomes.

* Experiences and Outcomes (Es and Os) are a set of clear and concise statements about children’s learning and
progression in each curriculum area. They are used to help plan learning and to assess progress throughout the
broad general education.

e Curriculum Organisers are overarching themes across groups of Experiences and Outcomes.

* Benchmarks set out clear statements about what learners need to know and be able to do to achieve a level in that
curricular area.

The senior phase is designed to build on the experiences and outcomes of the broad general education, and to allow
young people to take qualifications and courses that suit their abilities and interests. Learners study for qualifications at
‘National 3, ‘National 4’ or ‘National 5" in S4 (between the ages of fourteen to sixteen). After completing National 4/5s,
learners may choose to stay at school and study for additional National qualifications, or progress on to Higher and/or
Advanced Higher qualifications. Scottish Secondary schools have taught Computing Science as part of the senior phase
since the 1980s.

More information:
https://education.gov.scot/scottish-education-system/

https://en.wikipedia.org/wiki/Education_in_Scotland

About our funders

The authors thank the following organisations for funding the development and printing costs for this publication.

Skills Development Scotland (SDS) is Scotland’s national skills body. We contribute to Scotland’s sustainable
economic growth by supporting people and businesses to develop and apply their skills. We work with our partners to
provide services that deliver the very best outcomes for Scotland’s people, businesses and the economy.
https://www.skillsdevelopmentscotland.co.uk

The Royal Society of Edinburgh, Scotland’s National Academy, was established in 1783 for the advancement of
learning and useful knowledge. Our contemporary mission remains the same — deployment of knowledge for public
good; knowledge that contributes to the economic and social well-being of Scotland, its people and the wider world. The
RSE comprises over 1600 elected Fellows from a wide range of disciplines. www.rse.org.uk. The RSE Young People’s
Programme enables children and young people to engage with leading experts through school talks and science and
technology masterclasses (run in conjunction with Scottish universities). More information, including links to RSE teaching
resources, is available from: https://www.rse.org.uk/schools/

The Scottish Informatics and Computer Science Alliance (SICSA) is a collaboration of 14 Scottish Universities.
SICSA promotes international excellence in University-led research, education, and knowledge exchange for Scottish
Informatics and Computer Science. The SICSA Education Group focuses on enhancing collaboration across the core
activities of undergraduate and postgraduate provision; representing common interests to government, to employer,
professional and practitioner organisations; and to the wider education sectors. These include resourcing for University
Computing programmes, secondary school qualifications, the transition from school to University, and graduate skills.
http://www.sicsa.ac.uk/education/

Education Scotland is a Scottish Government executive agency charged with supporting quality and improvement in
Scottish education and thereby securing the delivery of better learning experiences and outcomes for Scottish learners of

all ages. http://education.gov.scot
_ o8
Skills N Y
Development

Scotland The Royal Society
of Edinburgh

KNOWLEDGE MADE USEFUL

: * . . Education
SICSA™ sxupmomatess MM Scotland
Foghlam Alba

63

22 This work is licensed under a Creative Commons Attribution-NonCommercial
0 \> @ ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
BY NC SA

This edition was published in September 2018.

Electronic copies of this Guide are available for free at http://teachcs.scot/

