Practise Creating Bar Charts in Python

This planning document is intended to support teachers who are delivering the NPA/PDA Data Science or for students who are learning independently. It also aligns with the Data Skills for Work framework.

Contents

Version Control	1
Lesson Description	2
Lesson Contents	2
Learning Intentions	2
Success Criteria	3
Knowledge Prerequisites	3
Lesson Requirements	4
lupyter Notebook	5
Datasets	7
How you can use this lesson	8
Alternative format	8

Version Control

Version number	Purpose/Change	Ву	Date
1.0	Published by Effini	John Bell	31 May 2022

Lesson Description

	Creation and modification of bar charts in Python using the seaborn package.
	This lesson is intended to follow the Creating Bar Charts in Python and Creating Other Graphs in Python lessons.
Lesson Overview	This is a consolidation activity to give learners the chance to apply the data visualisation skills they have learned in these lessons.
	Note that the accompanying Jupyter notebooks contain too many tasks for a single lesson; teachers are advised to select those tasks where learners would most benefit from consolidating their learning.
Торіс	Visualisation and Storytelling
Book Chapter(s)	Interpreting data

NPA level	5, 6
PDA level	7, 8
Data skills for work level	Core, Analysis

Lesson Contents

This lesson consists of:

- A lesson plan (this document)
- A PowerPoint presentation, 'Practise Creating Bar Charts in Python'
- 2 Jupyter notebooks:
 - 'practise_creating_bar_charts.ipynb' (for learners)
 - 'practise_creating_bar_charts_with_answers.ipynb' (for teachers)

Learning Intentions

We will be learning about creating bar charts in Python, specifically,

- creating vertical and horizontal bar charts
- displaying chart titles and axis titles

- changing the colours of bars
- changing the tick mark labels/intervals used in the axes, and
- changing the **order of bars**

Success Criteria

I can *create* vertical and horizontal bar charts I can *create* titles and axis titles I can *modify* the colours of bars I can *modify* the tick mark labels/intervals used in axes I can *modify* the order of the bars

Knowledge Prerequisites

Learners should know:

- Python programming to at least the level defined in SQA Computer Programming Level 5 (HY2C 45)
- How to use a Jupyter notebook to write, edit and run Python code
- How to create and modify bar charts in Python using the seaborn package, as covered in **Creating Bar Charts in Python**
- How to modify tick mark labels/intervals, as covered in **Creating Other Graphs in Python**

Lesson Requirements

	PDA	NPA	Data Skills for work
Qualification	Yes	Yes	Yes
Outcome ID(s)	CD7.3e, CD8.2h	DC5.3c, DC6.3d	c2.1, a2.1, a2.2, a3.1, a3.2
Outcome description(s)	CD7.3e Creating visualisations using software CD8.2h Creating visualisations using software	DC5.3c Create appropriate visualisations from data. DC6.3d Create appropriate visualisations from data.	 c2.1 Vocabulary used in data science and analytics a2.1 Use of tools to analyse data a2.2 Selecting suitable visualisations a3.1 Visualisation of data to provide insight a3.2 Visualisation of data to tell stories
Level	7, 8	5, 6	Core, Analysis
Software language	Python	Python	Python
Required equipment /software for student	Lesson: PowerPoint Python notebook: Jupyter notebook environment	Lesson: PowerPoint Python notebook: Jupyter notebook environment	Lesson: PowerPoint Python notebook: Jupyter notebook environment

Jupyter Notebook

There is a Jupyter notebook for this lesson that provides examples and programming tasks for learners, drawn from the examples in the lesson PowerPoint. The notebook uses Python 3.x and the following packages:

- <u>numpy</u> for scientific computing
- pandas for data manipulation
- <u>s3fs</u> an API to AWS S3 (Simple Storage Service), used to import datasets
- <u>seaborn</u> for data visualisation
- <u>matplotlib</u> for data visualisation

The tasks are described in the table below.

Notebook section	Task	Description
Creating Vertical and	Task 1 - Loch Length	Create a bar chart showing the length of each loch in a small, simple dataset.
Horizontal Bar Charts	Task 2 - Population of continents (2007)	Create a bar chart showing the population of each continent in 2007. The code required for aggregation is provided.
	Task 3 - Fraud clear up rates in 2019-2020	Create a bar chart showing, for each Local Authority in Scotland, the percentage of reported frauds that were cleared up in 2019-2020.
Changing Tick Mark Labels and Intervals	Task 4 - How many tickets did each movie sell?	Create a horizontal bar chart using the fashion data frame, that shows the number of transactions for each product (e.g. jacket or gloves).
	Task 5 - Have more women than men been awarded the Nobel Peace Prize?	Create a bar chart that shows how many tickets each movie sold. Increase the size of the plot to ensure bar labels are legible.
	Extension Task 1 - Has the situation changed?	Recreate the bar chart from Task 5 but this time filter the dataset to include more recent years.
Creating Bar Charts for Data that	Task 6 - Average crime clear up rates for all years	Create a bar chart that displays the mean clear up rate for each Local Authority in Scotland.

Needs	Task 7 - Which crime had the	Create a bar chart showing the
Aggregated	highest clear up rate?	average mean clear up rate for each
		crime across Scotland in the years
		2017 to 2019.
	Task 8 - How far did Skyler go?	Create a bar chart that shows the total
		distance a single athlete in a Strava
		dataset has travelled for each activity
		they undertake. Order the bars
		alphabetically. Order the bars
		alphabetically.
Ordering Bars	Task 9 - On which continent	Create a bar chart to answer this
	were most of the Nobel peace	question. Order the bars
	prize winners between 2000	alphabetically.
	and 2016 born?	
	Task 10 - The Longest Run	Create a bar chart to discover which
		of the athletes in the Strava data
		frame ran for the longest time (in a
		single run), as measured by the
		amount of time they were moving.
		bars using a Strave branding colour
		Paguiros consideration of the correct
		variable to use
	Task 11 - In which country were	Create a bar chart to answer this
	most female Nobel Peace Prize	question. Order the bars by value.
	winners born in?	Modify the tick mark intervals to an
		appropriate value.

Datasets

The following datasets are used in this lesson.

Dataset name	Description	Link
lochs	the volume, length and	https://datasets.learn-
	maximum depth of some	data.science/lochs.csv
	Scottish lochs.	
strava_activities_simple	running and cycling activity	https://datasets.learn-
	data for 2 <u>Strava</u> users.	data.science/strava_activiti
		es simple.csv
nobel_peace_prize_winners	all winners of the Nobel	https://datasets.learn-
	Peace Prize from 1901 to	data.science/nobel_peace
	2016.	prize winners.csv
manual movies	budget and revenue figures	https://datasets.loarn
	for recent Marvel movies	data science/manyol_movie
	ion recent <u>iviar ver movies</u> .	s csv
highest grossing usa movi	for each year between 1995	https://datasets.learn-
es 1995 2021	and 2021 information about	data science/highest_grossi
	the movie which made the	ng usa movies 1995 2021.
	most money that year at the	CSV
	U.S. box office.	
police_scotland_clearup_ra	crimes cleared up by <u>Police</u>	https://datasets.learn-
tes	Scotland as a percentage of	data.science/police scotlan
	those recorded. Includes	d clearup rates.csv
	clear up rates for robbery,	
	fraud and housebreaking	
	between 2017 and 2019.	
gapminder	Life Expectancy, population	https://ed-uni-data-
	and GDP per capita for each	lessons.s3.eu-west-
	country, for every 5 years	2.amazonaws.com/data/gap
	from 1952 to 2007.	minder.csv

How you can use this lesson

This lesson has been created by Effini in partnership with Data Education in Schools, The Data Lab and Data Skills for Work, with funding from the Scottish Government. © 2022. This work is licensed under a <u>CC BY-NC-SA 4.0 license</u>.

You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform and build upon the material

Under the following terms:

- Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial** You may not use the material for <u>commercial purposes</u>.
- **ShareAlike** If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.

Alternative format

If you require this document in an alternative format, such as large print or a coloured background, please contact hello@effini.com

or 4th Floor, The Bayes Centre 47 Potterrow Edinburgh EH8 9BT

